В НИИЯФ МГУ ведутся уникальные для России исследования нанопористых материалов для электроники


Вверху слева направо: Алексей Зотович, Сергей Зырянов, Дмитрий Лопаев, Дмитрий Волошин, Константин Клоповский, Александр Палов, Юрий Манкелевич, Константин Курчиков, Александр Чукаловский Внизу слева направо: Ольга Прошина, Александр Ковалев, Татьяна Рахимова, Александр Рахимов, Анна Васильева

Группа под руководством А.Т.Рахимова проводит исследования по взаимодействию плазмы с современными материалами электроники с ультранизкой константой диэлектрической проницаемости. Подробности – в интервью с ведущим научным сотрудником отдела микроэлектроники НИИЯФ МГУ, кандидатом физико-математических наук Дмитрием Лопаевым.

- Дмитрий Викторович, расскажите о своей работе в группе под руководством А.Т.Рахимова.

- Мы работаем с новыми нанопористыми материалами с низкой диэлектрической проницаемостью (low-k films), которые позволяют обеспечить распространение сигналов в новых чипах с высокой плотностью упаковки элементов – расстоянием (half-pitch) между элементами 10-22 нанометров. Чем меньше это расстояние, тем больше на одном квадратном сантиметре можно сделать элементов. Речь сейчас идёт о тысяче миллиардов элементов на квадратный сантиметр. Это процессоры, это память. Реально это такие вещи, когда на одной ладони у вас будут размещаться огромные вычислительные мощности.

- Насколько пористы материалы?

- До 50 процентов пористости. Это как в сыре с большим количеством близких к друг другу дырок. Размер типичной нанопоры – от 2 до 4 нанометров, то есть это фактически несколько слоёв атомов. Этот пористый материал очень лёгкий, легче, чем углеродные углепластики, но при этом он обладает очень высокой прочностью. В два раза прочнее кварца. Он напоминает пух или снег, но снег вы промнёте, а его нет. Он прочный, так как он связанный. Этот материал прессуют.

- Какова плотность?

- Плотность современных low-k диэлектриков порядка и менее одного грамма на кубический сантиметр.

- Что это за материалы и кто их производит?

- Все материалы предоставлены зарубежными партнёрами. В России нет таких материалов, так как нет производства.

Это органосиликатный материал, состоящий из кремния, кислорода, углерода и водорода. И называется поэтому SiOCH-материал. Это наиболее перспективный материал.

- В чём Ваш вклад?

- Мы начинали работать более шести лет назад. Второе уже было поколение этих материалов, и стояла задача внедрения технологии 22 нанометра, которые сейчас уже используются в процессорах последнего поколения от Intel. Это также твердотельные накопители, такие терабайтные диски вот такого размера, как Ваш мобильный телефон.

Наш вклад в технологию – то, что мы добываем знания о том, как деградируют эти материалы в плазме в условиях технологического процесса производства. То есть как происходят механизмы деградации во время травления. Зная это, можно предложить пути, как избежать деградации.

- Какие знания Вы получили по деградации?

- Дело в том, что материал очень пористый. Если в поры попадёт хоть немножко воды, материал как губка наглотается её и всё, диэлектрический материал не будет работать. Ведь вода обладает очень большой поляризуемостью, и, значит, будет большая диэлектрическая проницаемость. Поэтому материал должен быть гидрофобным.

Гидрофобность добивается с помощью CH3-метильных групп, покрывающих всю внутреннюю поверхность пор. Но, к сожалению, Si-СН3 группы очень сильно подвержены химическим реакциям с активными частицами – ионами, радикалами, фотонами, которые попадают в плёнку из плазмы во время технологического процесса. И вот задачи: понять, что происходит с Si-СН3 группами под действием плазмы; и как сделать так, чтобы они не удалялись, потому что как только СН3 группы удаляются, в поры проникает вода, и материал можно выбросить, так как происходит его деградация.

- И как быть?

- По принципу, как в «Кавказской пленнице»: тот, кто нам мешает, тот нам и поможет. Вот этот принцип был использован в нашей научной работе, он оказался очень жизненным.

- Как это возможно, расскажите?

- Оказалось, что те же жёсткие фотоны, но из другой плазмы, из благородной плазмы гелия, которые сильно поглощаются, они модифицируют не только поверхность, но и внутреннюю структуру SiO2 материала. И верхний слой материала сжимается. Если ещё бомбардируют ионы, разрушая связи, то образуется плотная корочка, но очень тонкая, толщиной всего в несколько нанометров. И получается, что мы материал запечатываем - и деградация не идёт, потому что туда ничего уже не проникает. Это было нами показано, да и технологи это освоили в производстве.

Но, к сожалению, избежать проникновения жёсткого излучения вглубь плёнки невозможно. Пытались закрывать сверху тоже слоями, тонкой корочкой, но она настолько тонкая, что излучение всё равно проникает, и деградация идёт даже под этой корочкой. И поэтому мы перешли к криогенным процессам. Это когда вы замораживаете при криогенной температуре – минус 100 - некие продукты в порах и спокойно делаете структуру. Таким образом не даёте проникнуть туда ни радикалам, ни чему-то ещё, что приводит к дефекту. После этого вы возгонкой, нагревая материал, удаляете из этих пор продукты, и получается, что вы сделали структуру, но не попортили соседний участочек.

- Какие ещё деградации материала наблюдаются во время технологического процесса?

- Нам нужно архитектуру слоя соединения в процессоре протравить. Но те радикалы, которые травят, это происходит обычно во фторуглеродной плазме, вызывают деградацию: они удаляют метильные группы, проникая по порам. Вы делаете структуру, всё протравили, а всё, что рядом, уже испорчено.

- Что делать в таком случае?

- Есть несколько способов. Вот сейчас непосредственно мы занимаемся тем, что выясняем, как происходит сам механизм травления, деградации уже с атомами фтора. Уже есть понимание. И нам очень сильно помогает то, что в университете много различного оборудования.

- Какие проводите диагностики?

- Приходится делать очень много сложных диагностик: FTIR, RBS, XRF, XPS. Вот XPS –это исследование поверхности с помощью излучения, когда вы фотонами жёсткими выбиваете электроны с нижних оболочек, а переходы с верхних оболочек характеризуют структуру материала. И, анализируя энергию, вы можете понять, потому что вы чувствуете химические сдвиги, его энергия зависит от элемента и с чем он химически связан. Анализируя эти спектры, можно понять с высочайшей точностью, как атомы связаны на поверхности. Я хочу сказать, для того чтобы провести только одну спектроскопическую эллипсометрию, которая имеет нанометровую чувствительность, нужен целый комплекс очень сложных диагностик. А это делать где-то на стороне очень дорого. Каждая диагностика – это тысячи долларов.

МГУ - одна из немногих организаций в мире, которая может себе позволить такую роскошь, как делать такие сложные исследования и делать сотни образцов. Мы ведём передовые исследования, потому что мы очень многое понимаем в исследовании современной плазмы.

Но всё равно в девелопмент, то есть в разработку конкретных вещей, мы не попадаём, это закрыто для нас, потому что это технология не российская. А создать свой центр разработки нужно. Иначе мы ничего своего не разработаем.

Права на интеллектуальную собственность остаются у нас. Если мы вдруг захотим какую-то технологию внедрить, вдруг она у нас разовьётся, мы то, что сделали, можем без всяких лицензий здесь применять.

Мы одни из очень немногих в России, кто исследует нанопористые материалы. Мы сейчас маленький осколок. России нужен некий центр. В таком центре таких групп, как наша, должно быть много по разным направлениям, но для них должен быть некий куб чистых комнат, в которых, как в конструкторе, я мог бы собрать разные технологии. Не менеджеров собрать, а технологии, именно когда стоят различные приборы, различные технологические линии. Я мог бы арендовать у какой-то западной компании, поэтому нужны некоммерческие соглашения. Тогда возможно разрабатывать, и всё, что вы сделали - ваше. У нас должна быть своя электроника.


Похожие материалы: