Вверху слева направо: Алексей Зотович, Сергей Зырянов, Дмитрий Лопаев, Дмитрий Волошин, Константин Клоповский, Александр Палов, Юрий Манкелевич, Константин Курчиков, Александр Чукаловский Внизу слева направо: Ольга Прошина, Александр Ковалев, Татьяна Рахимова, Александр Рахимов, Анна Васильева
Группа под руководством А.Т.Рахимова проводит исследования по взаимодействию плазмы с современными материалами электроники с ультранизкой константой диэлектрической проницаемости. Подробности – в интервью с ведущим научным сотрудником отдела микроэлектроники НИИЯФ МГУ, кандидатом физико-математических наук Дмитрием Лопаевым.
- Дмитрий Викторович, расскажите о своей работе в группе под руководством А.Т.Рахимова.
- Мы работаем с новыми нанопористыми материалами с низкой диэлектрической проницаемостью (low-k films), которые позволяют обеспечить распространение сигналов в новых чипах с высокой плотностью упаковки элементов – расстоянием (half-pitch) между элементами 10-22 нанометров. Чем меньше это расстояние, тем больше на одном квадратном сантиметре можно сделать элементов. Речь сейчас идёт о тысяче миллиардов элементов на квадратный сантиметр. Это процессоры, это память. Реально это такие вещи, когда на одной ладони у вас будут размещаться огромные вычислительные мощности.
- Насколько пористы материалы?
- До 50 процентов пористости. Это как в сыре с большим количеством близких к друг другу дырок. Размер типичной нанопоры – от 2 до 4 нанометров, то есть это фактически несколько слоёв атомов. Этот пористый материал очень лёгкий, легче, чем углеродные углепластики, но при этом он обладает очень высокой прочностью. В два раза прочнее кварца. Он напоминает пух или снег, но снег вы промнёте, а его нет. Он прочный, так как он связанный. Этот материал прессуют.
- Какова плотность?
- Плотность современных low-k диэлектриков порядка и менее одного грамма на кубический сантиметр.
- Что это за материалы и кто их производит?
- Все материалы предоставлены зарубежными партнёрами. В России нет таких материалов, так как нет производства.
Это органосиликатный материал, состоящий из кремния, кислорода, углерода и водорода. И называется поэтому SiOCH-материал. Это наиболее перспективный материал.
- В чём Ваш вклад?
- Мы начинали работать более шести лет назад. Второе уже было поколение этих материалов, и стояла задача внедрения технологии 22 нанометра, которые сейчас уже используются в процессорах последнего поколения от Intel. Это также твердотельные накопители, такие терабайтные диски вот такого размера, как Ваш мобильный телефон.
Наш вклад в технологию – то, что мы добываем знания о том, как деградируют эти материалы в плазме в условиях технологического процесса производства. То есть как происходят механизмы деградации во время травления. Зная это, можно предложить пути, как избежать деградации.
- Какие знания Вы получили по деградации?
- Дело в том, что материал очень пористый. Если в поры попадёт хоть немножко воды, материал как губка наглотается её и всё, диэлектрический материал не будет работать. Ведь вода обладает очень большой поляризуемостью, и, значит, будет большая диэлектрическая проницаемость. Поэтому материал должен быть гидрофобным.
Гидрофобность добивается с помощью CH3-метильных групп, покрывающих всю внутреннюю поверхность пор. Но, к сожалению, Si-СН3 группы очень сильно подвержены химическим реакциям с активными частицами – ионами, радикалами, фотонами, которые попадают в плёнку из плазмы во время технологического процесса. И вот задачи: понять, что происходит с Si-СН3 группами под действием плазмы; и как сделать так, чтобы они не удалялись, потому что как только СН3 группы удаляются, в поры проникает вода, и материал можно выбросить, так как происходит его деградация.
- И как быть?
- По принципу, как в «Кавказской пленнице»: тот, кто нам мешает, тот нам и поможет. Вот этот принцип был использован в нашей научной работе, он оказался очень жизненным.
- Как это возможно, расскажите?
- Оказалось, что те же жёсткие фотоны, но из другой плазмы, из благородной плазмы гелия, которые сильно поглощаются, они модифицируют не только поверхность, но и внутреннюю структуру SiO2 материала. И верхний слой материала сжимается. Если ещё бомбардируют ионы, разрушая связи, то образуется плотная корочка, но очень тонкая, толщиной всего в несколько нанометров. И получается, что мы материал запечатываем - и деградация не идёт, потому что туда ничего уже не проникает. Это было нами показано, да и технологи это освоили в производстве.
Но, к сожалению, избежать проникновения жёсткого излучения вглубь плёнки невозможно. Пытались закрывать сверху тоже слоями, тонкой корочкой, но она настолько тонкая, что излучение всё равно проникает, и деградация идёт даже под этой корочкой. И поэтому мы перешли к криогенным процессам. Это когда вы замораживаете при криогенной температуре – минус 100 - некие продукты в порах и спокойно делаете структуру. Таким образом не даёте проникнуть туда ни радикалам, ни чему-то ещё, что приводит к дефекту. После этого вы возгонкой, нагревая материал, удаляете из этих пор продукты, и получается, что вы сделали структуру, но не попортили соседний участочек.
- Какие ещё деградации материала наблюдаются во время технологического процесса?
- Нам нужно архитектуру слоя соединения в процессоре протравить. Но те радикалы, которые травят, это происходит обычно во фторуглеродной плазме, вызывают деградацию: они удаляют метильные группы, проникая по порам. Вы делаете структуру, всё протравили, а всё, что рядом, уже испорчено.
- Что делать в таком случае?
- Есть несколько способов. Вот сейчас непосредственно мы занимаемся тем, что выясняем, как происходит сам механизм травления, деградации уже с атомами фтора. Уже есть понимание. И нам очень сильно помогает то, что в университете много различного оборудования.
- Какие проводите диагностики?
- Приходится делать очень много сложных диагностик: FTIR, RBS, XRF, XPS. Вот XPS –это исследование поверхности с помощью излучения, когда вы фотонами жёсткими выбиваете электроны с нижних оболочек, а переходы с верхних оболочек характеризуют структуру материала. И, анализируя энергию, вы можете понять, потому что вы чувствуете химические сдвиги, его энергия зависит от элемента и с чем он химически связан. Анализируя эти спектры, можно понять с высочайшей точностью, как атомы связаны на поверхности. Я хочу сказать, для того чтобы провести только одну спектроскопическую эллипсометрию, которая имеет нанометровую чувствительность, нужен целый комплекс очень сложных диагностик. А это делать где-то на стороне очень дорого. Каждая диагностика – это тысячи долларов.
МГУ - одна из немногих организаций в мире, которая может себе позволить такую роскошь, как делать такие сложные исследования и делать сотни образцов. Мы ведём передовые исследования, потому что мы очень многое понимаем в исследовании современной плазмы.
Но всё равно в девелопмент, то есть в разработку конкретных вещей, мы не попадаём, это закрыто для нас, потому что это технология не российская. А создать свой центр разработки нужно. Иначе мы ничего своего не разработаем.
Права на интеллектуальную собственность остаются у нас. Если мы вдруг захотим какую-то технологию внедрить, вдруг она у нас разовьётся, мы то, что сделали, можем без всяких лицензий здесь применять.
Мы одни из очень немногих в России, кто исследует нанопористые материалы. Мы сейчас маленький осколок. России нужен некий центр. В таком центре таких групп, как наша, должно быть много по разным направлениям, но для них должен быть некий куб чистых комнат, в которых, как в конструкторе, я мог бы собрать разные технологии. Не менеджеров собрать, а технологии, именно когда стоят различные приборы, различные технологические линии. Я мог бы арендовать у какой-то западной компании, поэтому нужны некоммерческие соглашения. Тогда возможно разрабатывать, и всё, что вы сделали - ваше. У нас должна быть своя электроника.