МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ имени Д.В. СКОБЕЛЬЦЫНА

С.С. Белышев, А.Н. Ермаков, Б.С. Ишханов, А.А. Кузнецов, А.С. Курилик, К.А. Стопани, С.Ю. Трощиев

ВЫХОДЫ ФОТОЯДЕРНЫХ РЕАКЦИЙ НА ЯДРЕ 197AU НА ТОРМОЗНОМ ПУЧКЕ ФОТОНОВ С МАКСИМАЛЬНОЙ ЭНЕРГИЕЙ 29,1 МЭВ

Препринт НИИЯФ МГУ № 2010-2/859

Москва, 2010

С.С. Белышев, А.Н. Ермаков, Б.С. Ишханов, А.А. Кузнецов, А.С. Курилик,

К.А. Стопани, С.Ю. Трощиев

e-mail: sergey.troschiev@googlemail.com

ВЫХОДЫ ФОТОЯДЕРНЫХ РЕАКЦИЙ НА ЯДРЕ 197AU НА ТОРМОЗНОМ ПУЧКЕ ФОТОНОВ С МАКСИМАЛЬНОЙ ЭНЕРГИЕЙ 29,1 МЭВ

Препринт НИИЯФ МГУ № 2010-2/859

Аннотация

С использованием гамма-активационной методики на пучке тормозного излучения с максимальной энергией 29,1 МэВ измерены выходы фотоядерных реакций на ядре ¹⁹⁷Au. Полученные результаты сравниваются с ранее выполненными экспериментами и результатами теоретических расчетов.

S. S. Belyshev, A. N. Ermakov, B. S. Ishkhanov, A. A. Kuznetsov, A. S. Kurilik,

K. A. Stopani, S. Yu. Troschiev

YIELDS OF PHOTONUCLEAR REACTIONS ON ¹⁹⁷AU AT 29,1 MEV BREMSSTRAHLUNG

Preprint MSU SINP N 2010-2/859

Abstract

Yields of photoneutron reactions on ¹⁹⁷Au were measured on the bremsstrahlung photon beam with maximum energy 29,1 MeV using gamma-activation analysis. Experiment results are compared with earlier experimental works and theoretical calculations.

© С.С. Белышев, А.Н. Ермаков, Б.С. Ишханов, А.А. Кузнецов, А.С. Курилик, К.А. Стопани, С.Ю. Трощиев © НИИЯФ МГУ, 2010, <u>http://www.sinp.msu.ru</u>

Введение

Экспериментальные данные по сечениям фотоядерных реакций в области дипольного гигантского резонанса (ДГР) являются основой как для понимания особенностей структуры атомных ядер, связанных с симметриями ядра и с их нарушением [1], так и для создания теоретических моделей, описывающих ДГР [2]. В данной работе исследуются фотоядерные реакции на ядре ¹⁹⁷Au.

Ранее сечения фотоядерных реакций на ¹⁹⁷Au были измерены независимо в трех лабораториях: в экспериментах на пучках квазимонохроматических гамма-квантов в Саклэ [3] и Ливерморе [4] и на тормозном пучке в Москве [5]. Несмотря на то, что измеренные сечения имеют одинаковые особенности поведения в зависимости от энергии, они ощутимо отличаются друг от друга. Это различие обусловлено методикой анализа экспериментальных данных и, в частности, с разделением каналов реакции различной множественности.

Для разделения нейтронов по множественности был предложен метод [6], основанный на анализе экспериментальных данных по сечению реакции полного выхода фотонейтронов $\sigma(\gamma, xn)$, измеряемому непосредственно в эксперименте.

Гамма-активационный метод анализа выходов фотоядерных реакций позволяет сопоставить реакции различной множественности и тем самым независимым способом сравнить сечения реакций (γ ,1n) и (γ ,2n) и эффективность предложенного в [6] метода.

Целью настоящей работы являлось измерение выходов реакций различной множественности на изотопе ¹⁹⁷Au в области энергии ДГР методом гамма-активации, анализу полученных результатов и сравнению их с данными из работ [3-6].

Методика эксперимента

Пучок электронов, ускоренных до энергии 29,1 МэВ в разрезном микротроне RTM-70 [7], попадал на тормозную мишень из вольфрама толщиной 2,5 мм. Непосредственно за тормозной мишенью на оси пучка располагался образец ¹⁹⁷Au толщиной 100 мкм (рис. 1). Облучение продолжалось 3 часа 23 минуты. В ходе облучения в образце ¹⁹⁷Au происходили фотоядерные реакции с выбиванием нуклонов, в результате которых и последующего бетараспада образовывались изотопы Au, Pt, Ir и Os.

На рис. 2 показана часть N-Z диаграммы атомных ядер, на которой можно увидеть различные изотопы, образующиеся при облучении ¹⁹⁷Au тормозным гамма-излучением с верхней границей 29,1 МэВ. В табл. 1 приведены пороги фотоядерных реакций с выбиванием нуклонов, которые могут происходить при этой энергии.

3

Рис. 1. Схема эксперимента на тормозном пучке. На рисунке изображены спектры электронов и тормозных гамма-квантов $W(E, E_m)$.

Hg 195 40 h 9,5 h ^{hγ} (37,) e ⁻ ; e e	Hg 196 0,15	Hg 197 23,8 h 64,1 h 1y134 ⁶ y77;	Hg 198 9,97	Hg 199 42,6 m 16.87	Hg 200 23,10
γ 560; γ 780; 388 61 m g	σ 110 + 3000	e ⁻ 191 ε e ⁻ m g	σ 0.017 + 2	lγ 158; 374 e ⁻ d 2100	σ < 60
Au 194 38,0 h	Au 195 30,5 s 186,1 d	Au 196 9,7h 8,2s 6,2d	Au 197 7,73 s 100	Au 198 2,30 d 2,6943 d	Au 199 3,139 d
ε β ⁺ 1,5 γ 328; 294; 1469	ε 1 999 e g	μγ μγ β ⁻ 0.3 lγ μγ γ 356; 148; (85) 333;* 188 e ⁻ 426	hγ279 e 98.7	Ιγ 215: β ⁻ 1.0; 97; 1.4 180; γ 412 204 σ 26500	β ⁻ 0,3; 0,5 γ 158; 208 g σ 30
Pt 193 4,33 d ~ 50 a	Pt 194 32,9	Pt 195 4,02 d 33.8	Pt 196 25,3	Pt 197 94,4 m 18,3 h	Pt 198 7,2
lγ (136) e g	or 0,1 + 1,1	ly 99; 130 e 1r 28	rr 0,045 + 0,55	hy 346 e ⁻ β ⁻ 0,7 m e ⁻ ; g	σ 0,027 + 4,0
lr 192	lr 193	lr 194	lr 195	lr 196	lr 197
241 a 1,4 m 73,83 d iγ(58) ε γ iγ(58) ε γ317: e ⁻ β ⁻ 468; g g γ(317) σ1500 + ?	10,53 d 52,7 hy (80) c 6 e ⁻ + 105	β ⁻ 2,2 γ 7328; γ483; 294 328 σ	3,8 h 2,5 h β ⁻ 0,4; β ⁻ 1,0; 1,0 1,1 γ 320; 433; γ 99; 665; 365 211 hy; g; m g	1,40 h 52 s β ⁻¹ 1.2 β ⁻³ 2 γ 394; 521; γ 356; 356; 447; 779; 447 647 333	8,9 m 5,8 m β ⁻ 2,0 β ⁻ γ 470; 431; 816
Os 191 13,10 h 15,4 d ^{hy} (⁷⁴) e ⁻ σ ³⁸⁰	Os 192 6,1 s 41,0 hy 569; 206; 453; 302; 485 y 2.0	Os 193 30,11 h β ⁻ 1,1 γ 139; 460; 73; g σ 40	Os 194 6,0 a β ⁻ 0,1 γ43 e ⁻ g	Os 195 6,5 m	Os 196 34,9 m ^{β⁻ 0,8} γ 408; 126

Рис. 2. Ядра, образующиеся в фотоядерных реакциях на ¹⁹⁷Аи при облучении тормозными фотонами с максимальной энергией 29,1 МэВ.

Розиция	Продукт	Порог реакции,	Период полураспада
гсакция	реакции	МэВ	продукта реакции
(y,1n)	196Au	8,07	6.18 дней
(y,2n)	195Au	14,71	186 дней
(y,3n)	194Au	23,09	38.02 часов
(y,1p)	196Pt	5,78	стабильный
(y,1p1n)	195Pt	13,7	стабильный
(y,1p2n)	194Pt	19,81	стабильный
(y,1p3n)	193Pt	28,17	50 лет
(y,2p)	195Ir	14,03	2.5 часа
(y,2p1n)	194Ir	21,26	19.28 часов
$(\gamma, 2n2p)$	193Ir	27,33	стабильный
(y,3p)	194Os	20,58	6.0 лет
(y,3p1n)	193Os	27,69	30.11 часов

Табл. 1. Пороги фотоядерных реакций на ¹⁹⁷Аи и периоды полураспада продуктов этих реакций.

После облучения спектр остаточной гамма-активности образца ¹⁹⁷Au был измерен детектором из сверхчистого германия Canberra GC3019 [8]. Временная диаграмма облучения и последующего измерения наведенной гамма-активности показана на рис. 3. При обоих измерениях облученный образец ¹⁹⁷Au был расположен вплотную к детектору. За все время измерения было измерено 2437 спектров. На рис. 4 изображены спектры, измеренные в различные временные интервалы.

Рис. 3. Время облучения образца ¹⁹⁷Аи и время измерения остаточной активности.

В спектре выделялись пики, соответствующие гамма-переходам в ядрах, образующихся при бета-распаде продуктов фотоядерных реакций. Идентификация пиков происходила по их энергии и времени жизни.

Сечение фотоядерной реакции $\sigma(E)$ связано с выходом реакции $Y(E_m)$ соотношением

$$Y(E_m) = n \frac{I}{e} \int_{0}^{E_m} \sigma(E) W(E, E_m) dE,$$

где I – ток электронного пучка в ускорителе, e – заряд электрона, n – количество ядер в образце, $W(E, E_m)$ – тормозной спектр с максимальной энергией E_m .

Рис. 4. Спектр остаточной активности. (а) – первый день измерений, (б) – последние два дня первого измерения, (в) – последний месяц второго измерения. Указаны гамма-переходы, соответствующие распаду ¹⁹⁶Au.

Выход реакции в гамма-активационном эксперименте находится по формуле

$$Y(E_m) = \frac{\lambda \cdot A}{eff \cdot I(1 - e^{-\lambda t_i})e^{-\lambda t_d}(1 - e^{-\lambda t_m})},$$
(1)

где λ – постоянная распада образующегося ядра (табличное значение), *eff* – эффективность регистрации детектором соответствующей гамма-линии, I – интенсивность линии, t_i – время облучения, t_d – время между концом облучения и началом измерения спектра, t_m – продолжительность измерения спектра, A – количество отсчетов детектора, соответствующих выбранной гамма-линии спектра остаточной активности ¹⁹⁷Au (площадь под соответствующим пиком в спектре). При нахождении выходов использовалась эффективность детектора *eff* с учетом самопоглощения в образце ¹⁹⁷Au, рассчитанная при помощи GEANT4 [8].

Если образующееся в фотоядерной реакции ядро имеет одно или несколько метастабильных состояний, то после вылета нуклона это ядро может оказаться в одном из этих состояний. Гамма-активационный эксперимент позволяет определить выход фотоядерных реакций с образованием ядра как в основном состоянии, так и в метастабильном.

Так как измерения гамма-спектров начались через пять минут после окончания облучения, изотопы и состояния, имеющие время жизни менее 1 минуты в эксперименте не наблюдались.

Все результаты по выходам различных реакций приведены в относительных единицах. Окончательные результаты нормированы на выходы реакции ¹⁹⁷Au(γ,1n).

Реакция ¹⁹⁷Au(γ,1n)

В результате выбивания нейтрона из ядра ¹⁹⁷Au может образоваться ядро ¹⁹⁶Au как в основном состоянии, так и в двух метастабильных состояниях ^{196m1}Au и ^{196m2}Au. Основное состояние ¹⁹⁶Au имеет период полураспада 6,18 дней. Схема его распада приведена на рис. 5 (здесь и далее при построении схем использовалась база данных [9] и интерфейс для нее [10]). Наиболее интенсивные гамма-линии, образующиеся при распаде ¹⁹⁶Au, и их интенсивности приведены в табл. 2. Эти линии наблюдаются в спектрах первого измерения (рис. 4), а наиболее интенсивные из них – и в спектрах начала второго измерения. Чтобы удостовериться в том, что наблюдаемые линии образуются при распаде изотопа ¹⁹⁶Au, были измерены изменения их интенсивностей с течением времени (рис. 6-10). Периоды полураспада линий приведены в табл. 3. Скорость уменьшения их интенсивности соответствует скорости распада ¹⁹⁶Au.

Рис. 5. Распад ядра ¹⁹⁶Au.

Е, кэВ	I, %
332,983	22,9
355,684	87
426	7
1005,894	0,0027
1091,331	0,149

Рис. 6. Уменьшение интенсивности линии 332.98 к
эВ с течением времени. Экспериментально измеренный период полураспад
а $T_{1/2}=\!\!6,\!13$ дней.

Рис. 7. Уменьшение интенсивности линии 355.68 кэВ с течением времени. Экспериментально

измеренный период полураспада *T*_{1/2}=6,12 дней.

Рис. 8. Уменьшение интенсивности линии 426,00 к
эВ с течением времени. Экспериментально измеренный период полураспад
а $T_{1/2}$ =6,12 дней.

Рис. 9. Уменьшение интенсивности линии 1005,894 кэВ с течением времени. Экспериментально

измеренный период полураспада $T_{1/2}$ =7 дней.

Рис. 10. Уменьшение интенсивности линии 1091,331 кэВ с течением времени. Экспериментально измеренный период полураспада $T_{1/2}$ =6,16 дней.

По площади соответствующих пиков в спектре на основе формулы (1) был рассчитан выход реакции (γ,1n) на ядре ¹⁹⁷Au с образованием ядра ¹⁹⁶Au в основном состоянии. В табл. 3 приведены выходы, определенные по наиболее интенсивным линиям, так как выходы, определенные по менее интенсивным линиям сильно искажены из-за сложения фотонов в детекторе. Такое сложение связанно с каскадными девозбуждениями ядер с последовательным испусканием нескольких гамма-квантов за время меньшее, чем временное разрешение детектора. Этот эффект обычно ослабляет наиболее интенсивные линии (до десятков процентов) и усиливает менее интенсивные линии (до нескольких порядков).

В случае ¹⁹⁶Au за счет возможности распада по бета-минус каналу на ¹⁹⁶Hg имеется возможность определить выход, не подверженный ошибкам из-за сложения пиков. Единственной линией в спектре гамма-квантов, соответствующей распаду ¹⁹⁶Au с образованием ¹⁹⁶Hg, является линия 426 кэВ. Этот переход не ослабляется и не усиливается за счет сложения в детекторе. Поэтому выход, определенный по этой линии является наибольшим из всех, определенных по интенсивным линиям. Так как выходы реакции (γ ,1n), определенные по другим интенсивным линиям в спектрах, хорошо согласуются с выходом, определенным по линии 426 кэВ, оцененным выходом реакции ¹⁹⁷Au(γ ,1n) будем считать выход, определенный по этой линии.

E KaB	$Y(E_{\perp})$	<i>T</i> _{1/2} (эксп.),	<i>T</i> _{1/2} (табл.),
L, KJD	(\mathcal{L}_m)	дни	дни
332,983	$(1,460\pm0,001)\cdot10^5$	6,13	
355,684	$(1,864\pm0,001)\cdot10^5$	6,12	
426	$(2,032\pm0,003)\cdot10^5$	6,12	6,18
1005,894	$(1,8\pm0,3)\cdot10^5$	7,00	
1091,331	$(2,00\pm0,02)\cdot10^5$	6,16	
оцененный	$(2.03\pm0.01)\cdot10^5$		
выход	$(2,03\pm0,01)^{10}$		

Табл. 3. Выход реакции ¹⁹⁷Au(γ,1n)¹⁹⁶Au (приведены только статистические погрешности).

Выход реакции (γ,1n) с образованием первого метастабильного состояния ^{196m1}Au (E=84,66 кэВ) нельзя измерить в данном эксперименте, так как время жизни этого состояния составляет 8,1 секунду, то есть все образовавшиеся во время облучения ядра распадутся еще до начала измерения.

Второе метастабильное состояние ^{196m2}Au (E=595,66 кэВ) имеет период полураспада 9,6 часов. Схема распада метастабильного состояния показана на рис. 5. Распад ^{196m2}Au можно зарегистрировать по двум гамма-линиям: 147.81 кэВ с интенсивностью 43% и 188.27 кэВ с интенсивностью 37,4%. Обе эти линии видны в измеренных спектрах (рис. 11) и имеют время жизни, соответствующее времени жизни изомера (рис. 12-13). Найденный из

анализа интенсивности этих пиков выход изомера приведен в табл. 4. В результате усреднения получены оцененные значения выхода изомера 196m2 Au $Y(E_m) = 102 \pm 10$.

Рис. 11. Гамма-переходы в измеренном спектре остаточной активности, соответствующие распаду ^{196m2}Au.

Рис. 12. Уменьшение интенсивности линии 147.81 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2} =9,01 часов.

Рис. 13. Уменьшение интенсивности линии 188.27 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2} =9,96 часов.

Табл. 4. Выход реакции ¹⁹⁷Au(γ,1n)^{196m2}Au (приведены только статистические погрешности).

Е, кэВ	$Y(E_m)$	<i>T</i> _{1/2} (эксп.),	<i>T</i> _{1/2} (табл.),
		часы	часы
147.81	102±7	9,01	0.6
188.27	102±8	9,96	9,0
оцененный	102+10		
выход	102-10		

Реакция ¹⁹⁷Au(γ,2n)

В результате реакции ¹⁹⁷Au(γ ,2n) ядро ¹⁹⁵Au может образовываться в основном состоянии с периодом полураспада 186,09 дней и в метастабильном состоянии ^{195m}Au (318,58 кэВ) с периодом полураспада 30,5 секунд. За время между облучением и началом измерения спектра все ядра изомера распадаются в основное состояние, поэтому в данном эксперименте невозможно определить выход изомера ^{195m}Au.

В результате бета-распада ¹⁹⁵Au превращается в ¹⁹⁵Pt, и в спектре гамма-переходов ¹⁹⁵Pt наблюдаются две интенсивные гамма-линии: 98,85 кэВ с интенсивностью 10,9% и 129,70 кэВ с интенсивностью 0,818% (рис. 14). Обе эти линии видны как в первом, так и во втором измерении (рис. 15). Зависимость их интенсивности от времени показана на рис. 16

и 17. Время их жизни соответствует времени жизни ядра ¹⁹⁵Au. В результате усреднения получены оцененные значения выхода изотопа ¹⁹⁵Au $Y(E_m) = (3,43\pm0,04) \cdot 10^4$.

Рис. 15. Спектр остаточной активности, измерение 2. Указаны гамма-переходы, соответствующие распаду ¹⁹⁵Au.

Рис. 16. Уменьшение интенсивности линии 98,85 кэВ с течением времени. Экспериментально

измеренный период полураспада $T_{1/2}$ =193 дня.

Рис. 17. Уменьшение интенсивности линии 129,70 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2}=180 дней.

Е, кэВ	$Y(E_m)$	<i>T</i> _{1/2} (эксп.),	<i>T</i> _{1/2} (табл.),
		дни	дни
98.85	$(3,26\pm0,04)\cdot10^4$	193	196.00
129.70	$(3,59\pm0,23)\cdot10^4$	180	180,09
оцененный	$(2, 42 + 0, 04) \cdot 10^4$		
выход	(3,43±0,04).10		

Табл. 5. Выход реакции ¹⁹⁷Au(γ,2n)¹⁹⁵Au (приведены только статистические погрешности).

Реакция ¹⁹⁷Au(γ,3n)

В результате реакции ¹⁹⁷Au(γ ,3n) ядро ¹⁹⁴Au может образовываться в основном состоянии с периодом полураспада 38,02 часа и в одном из двух метастабильных состояний ^{194m}Au (107,4 кэВ) и ^{194m2}Au (475,8 кэВ), время жизни которых не превышает секунду, поэтому выход их не может быть измерен в данном эксперименте. В основном состоянии ядро ¹⁹⁴Au распадается на ядро ¹⁹⁴Pt (рис. 18), которое испускает гамма-кванты с энергиями, приведенными в табл. 6. Эти линии видны в первом измерении (рис. 19). Кривые распада приведены на рис. 20-24. Найденный по ним выход приведен в табл. 7.

Рис. 18. Упрощенная схема распада ¹⁹⁴Аu. Указаны только наиболее интенсивные переходы.

Табл. 6. Гамма-кванты, образующиеся при бета-распаде ядра ¹⁹⁴Аu.

Е, кэВ	I, %
328.455	61
948.29	2.20
1104.05	2.01
1468.91	6.4
2043.67	3.60

Рис. 19. Гамма-переходы в измеренном спектре остаточной активности, соответствующие распаду ¹⁹⁴Au.

Рис. 20. Уменьшение интенсивности линии 328.455 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2} =29 часов.

Рис. 21. Уменьшение интенсивности линии 948.29 кэВ с течением времени. Экспериментально

измеренный период полураспада $T_{1/2}$ =46 часов.

Рис. 22. Уменьшение интенсивности линии 1104.05 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2}=35 часов.

Рис. 23. Уменьшение интенсивности линии 1468.91 кэВ с течением времени. Экспериментально

измеренный период полураспада $T_{1/2}$ =41 час.

Рис. 24. Уменьшение интенсивности линии 2043,67 кэВ с течением времени. Экспериментально измеренный период полураспада *T*_{1/2}=37 часов.

Е, кэВ	$Y(E_m)$	T _{1/2} (эксп.),	<i>T</i> _{1/2} (табл.),
		часы	часы
328.455	188 ± 8	29	
948.29	291±97	46	
1104.05	237±72	35	38,02
1468.91	268±31	41	
2043.67	303±42	37	
оцененный	257 ± 50		
выход	237±30		

Табл. 7. Выход реакции ¹⁹⁷Au(γ,3n)¹⁹⁴Au (приведены только статистические погрешности).

Фотопротонные реакции на ¹⁹⁷Au

Кроме рассмотренных фотонейтронных реакций на ядре ¹⁹⁷Au при облучении тормозными фотонами с максимальной энергией 29,1 МэВ происходят фотопротонные реакции различной множественности с образованием изотопов Pt, Ir и Os (табл. 1). Образование этих изотопов не наблюдалось в эксперименте. Изотопы ¹⁹⁶Pt, ¹⁹⁵Pt, ¹⁹⁴Pt и ¹⁹³Ir являются стабильными, а ¹⁹³Pt и ¹⁹³Os – долгоживущими (период полураспада составляет 50 лет и 6 лет соответственно) и не могут наблюдаться при наших временах облучения и измерения. Фотоны, образующиеся при распаде ядра ¹⁹⁴Ir, имеют те же энергии, что и фотоны, образующиеся при распаде ядра ¹⁹⁴Au, поэтому выход ¹⁹⁴Ir не может быть оценен. Изомер ^{193m}Ir распадается с испусканием фотонов с энергией 80 кэB, которые лежат в той же энергетической области, что и рентгеновские линии, образующиеся при е-захвате на ¹⁹⁶Au, поэтому выход ^{193m}Ir не может быть оценен. Выходы остальных фотопротонных реакций были оценены, полученные оценки приведены в табл. 8.

Реакция	$Y(E_m)$
$(\gamma,1p1n)^{195m}$ Pt	<70
$(\gamma, 1p3n)^{193m}$ Pt	<1200
$(\gamma,2p)^{195}$ Ir	<20
$(\gamma,2p)^{195m}$ Ir	<1
$(\gamma,2p1n)^{194m}$ Ir	<1
$(\gamma, 3p1n)^{193}$ Os	<1

Табл. 8. Оценки выходов фотопротонных реакций на ¹⁹⁷Au.

Относительные выходы фотонейтронных реакций на ¹⁹⁷Аи

Найденные выходы (табл. 3, 4, 5 и 7) были нормированы на выход наиболее интенсивной реакции (γ,1n). Такая нормировка позволяет избежать ошибок, связанных с абсолютным измерением выходов реакций. Относительные выходы фотонейтронных реакций на ¹⁹⁷Au приведены в табл. 9, оценки относительных выходов фотопротонных реакций – в табл. 10. Здесь же для сравнения приведены выходы соответствующих реакций,

рассчитанные нами по экспериментальным данным [3,4] и по оцененным данным работы [6].

Реакция		$(\gamma, 2n)^{195}$ Au	$(\gamma, 3n)^{194}$ Au	$(\gamma, 1n)^{196m2}$ Au
$Y(E_m)$		$0,17\pm0,01$	$(1,3\pm0,4)\cdot10^{-3}$	$(5,0\pm0,5)\cdot10^{-4}$
$Y(E_m)$, tec	p. [11,12]	0,15	$2,0.10^{-3}$	
	$Y(E_m)$,	0.12	$1.2 10^{-3}$	
Сакца	эксп. [3]	0,12	1,2.10	
Cakiij	$Y(E_m)$,	0.16	$1.1.10^{-3}$	
	оцен. [6]	0,10	1,1 10	
	$Y(E_m)$,	0.18		
Пирермор	эксп. [4]	0,10		
ливермор	$Y(E_m)$,	0.18		
	оцен. [6]	0,10		
Москва	$Y(E_m)$,	0.14	$1.4 \cdot 10^{-3}$	
	оцен. [6]	0,11	1,110	
<i>Y</i> (<i>E_m</i>), эксп. [13,14]				$5,0.10^{-4}$
$Y(E_m)$, teop. [15]				$5 \cdot 10^{-4}$
Y(E _m), эксп. [15]				$6 \cdot 10^{-4}$
$Y(\overline{E_m})$, эксп. [16]				$\overline{5,3\cdot 10^{-4}}$
Y(E _m), эксп. [17]				$6,5 \cdot 10^{-4}$

Табл. 9. Относительные выходы фотонейтронных реакций на ¹⁹⁷Au.

Табл. 10. Оценки относительных выходов фотопротонных реакций на ¹⁹⁷Au.

Реакция	$Y(E_m)$
$(\gamma,1p1n)^{195m}$ Pt	$< 3.10^{-4}$
$(\gamma,1p3n)^{193m}$ Pt	$<2.10^{-4}$
$(\gamma, 2p)^{195}$ Ir	$<1.10^{-4}$
$(\gamma,2p)^{195m}$ Ir	$<1.10^{-5}$
$(\gamma,2p1n)^{194m}$ Ir	$<1.10^{-5}$
$(\gamma, 3p1n)^{193}$ Os	$<1.10^{-5}$

Обсуждение результатов

По фотоядерным реакциями на ядре ¹⁹⁷Au имеется обширный экспериментальный материал ([3-5,13-18]). Из приведенных в табл. 9 и 10 относительных выходов фотопротонных реакций видно, что они существенно меньше выходов фотонейтронных реакций. Поэтому в дальнейшем будем считать, что

$$\sigma(\gamma, \ln X) = \sigma(\gamma, \ln n),$$

$$\sigma(\gamma, 2nX) = \sigma(\gamma, 2n),$$

 $\sigma(\gamma, 3nX) = \sigma(\gamma, 3n) \, .$

Полные выходы фотонейтронных реакций $\sigma(\gamma, xn) = \sigma(\gamma, n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n)$, измеренные в работах [3-5], приведены на рис. 25. В работах [3,4] использовался пучок квазимонохроматических фотонов. В работе [5] использовался пучок тормозных фотонов. Приведенные результаты в целом достаточно хорошо согласуются между собой и с результатами теоретических расчетов [6], выполненных на основе модели, развитой в работах [11,12].

[4], круги – работе [5], треугольники – работе [3], а сплошная кривая – расчету по модели [11,12]. Указаны вклады процессов с образованием одного (пунктир), двух (точки) и трех (штрих-пунктир) нейтронов в теоретическое полное сечение.

В рассматриваемой энергетической области фотопоглощение обусловлено в основном формированием ДГР. Сечение такого процесса для средних и тяжелых ядер может быть аппроксимировано суммой четырех лоренцевых кривых, отвечающих двум типам дипольных возбуждений ядра с изоспинами $T < \equiv T_0$ и $T > \equiv T_0+1$ (где T_0 – изоспин основного состояния ядра) с нейтрон-протонными колебаниями вдоль и поперек оси симметрии ядра. Параметры этих лоренцианов (энергия, осцилляторная сила и ширина резонанса) вычислены в рамках полумикроскопической модели ДГР [11].

Каждое из четырех дипольных состояний является частично-дырочным 1p1hвозбуждением ядра – входным состоянием с m = 2 экситонами. Оно распадается либо вследствие эмиссии возбужденного нуклона (переход $m \rightarrow m-1$), либо вследствие перехода ($m \rightarrow m+2$) к более сложной 2p2h-конфигурации, вызванного остаточным двухчастичным взаимодействием. В дальнейшем ситуация повторяется.

В результате внутриядерных (m \rightarrow m + 2) переходов энергия возбуждения составной системы распределяется по все большему числу экситонов, пока не будет достигнуто состояние теплового равновесия либо в исходном, либо в одном из остаточных ядер. После этого начинается сравнительно длительный процесс испарения нуклонов. Рассмотренная схема реакции, идущей с испусканием предравновесных и равновесных частиц, описывается с помощью комбинации экситонной и испарительной моделей [12].

Входные дипольные состояния в области ДГР коллективизированы из-за остаточного взаимодействия различных 1p1h-конфигураций. Это уменьшает вероятность их распада на 2p2h-состояния, так как когерентные 1p1h–состояния слабо связаны с большинством таких состояний и взаимодействуют главным образом с немногочисленными коллективными состояниями типа «дипольный фонон + поверхностный квадрупольный фонон».

Вследствие этого увеличивается вероятность вылета первичного нуклона непосредственно из входного состояния. Это приводит к уменьшению выхода вторичного, третичного и т.д. нуклонов. Этот эффект необходимо учитывать при описании фотонуклонных реакций на ядрах с избытком нейтронов или протонов. Иначе будут получены завышенные значения сечений реакций с множественным выходом фотонуклонов, так как в этом случае порог отделения нескольких нуклонов может располагаться вблизи пика дипольного резонанса, где происходит максимальная коллективизация входных состояний.

На рис. 26 сравниваются экспериментально измеренные парциальные сечения $\sigma(\gamma, n)$ и $\sigma(\gamma, 2n)$, полученные в [3,4], оцененные сечения этих реакций на основе метода [6] и результат теоретического расчета [11,12].

Из сравнения парциальных сечений можно сделать следующие заключения:

- Сечения реакции (*γ*,*n*), полученные в экспериментах [3,4], достаточно хорошо согласуются в области энергии от порога ДГР до 15 МэВ.
- Основные различия сечений (*γ*,*n*) и (*γ*,2*n*) наблюдаются в области спада максимума гигантского резонанса.
- Сечение реакции (γ,2*n*), полученное в [4], в ~1,5 раза больше сечения [3].

23

• Оцененные по методу [6] сечения достаточно хорошо согласуются между собой и с данными теоретических расчетов [11,12].

Рис. 26. Сравнение оцененных сечений парциальных реакций ¹⁹⁷Au(γ,nX) – сверху и ¹⁹⁷Au(γ,2nX) – снизу с экспериментальными данными, полученными в Саклэ [3] – слева и в Ливерморе [4] – справа: сплошная линия – теоретические расчеты по модели [11,12], круги – оцененные данные [6], квадраты – экспериментальные данные.

Однако парциальные сечения $\sigma(\gamma, n)$ и $\sigma(\gamma, 2n)$ [3,4] имеют различия, выходящие за точность представленных результатов. Как уже было установлено ранее [6], это различие связано с неправильным учетом множественности фотонейтронных реакций, что приводит к перераспределению части сечения между каналами (γ, n) и ($\gamma, 2n$).

Особенно это различие становится заметным для тяжелых ядер, так как порог реакции (γ ,2n), понижаясь с увеличением массового числа A, оказывается в области максимума ДГР. Предложенный в работе [6] метод извлечения сечений реакций (γ ,n) и (γ ,2n) позволяет более подробно учесть вклад каналов реакции (γ ,n) и (γ ,2n) в полное сечение и тем самым уменьшить ошибки, обусловленные неточным учетом множественности реакции. Применение этого метода для сечения реакций (γ ,n) и (γ ,2n) показало, что оцененные сечения значительно лучше согласуются между собой.

В табл. 9 полученные нами в эксперименте выходы фотонейтронных реакций сравниваются с выходами, рассчитанными на основе экспериментальных данных [3,4], оцененных данных [6] и расчета по модели [11,12]. Для нахождения выходов экспериментальные, оцененные и теоретические сечения были свернуты с тормозным спектром, рассчитанным при помощи GEANT4.

Измеренный нами выход реакции (γ,2n) хорошо согласуется как с экспериментальными данными Ливерморской лаборатории, так и с оцененными данными [6]. Выход, рассчитанный на основе экспериментальных данных лаборатории Саклэ значительно ниже полученного. Оцененные данные лаборатории Саклэ лучше согласуются с полученным нами выходом, что позволяет утверждать, что процедура оценки сечений [6] увеличивает точность экспериментальных данных.

Измерение выходов изомеров на ядре ¹⁹⁷Au позволяет дополнительно сравнить различные подходы к описанию распада ДГР. На рис. 27 приведена зависимость относительного выхода изомерного состояния (E=595,66 кэB, $J^P=12^-$) в реакции ¹⁹⁷Au(γ ,n) от верхней границы тормозного спектра.

В работах [13,14] впервые было обнаружено образование изомерного состояния $J^P=12^-$ при облучении ¹⁹⁷Au тормозным гамма-излучением с максимальной энергией $E_m=52$ МэВ. Для относительного выхода изомерного состояния было получено значение 5,0·10⁻⁴.

В работе [15] изомерное отношение измерено и рассчитано теоретически для максимальной энергии тормозного спектра $E_m = 22$ МэВ.

В работе [16] изомерное отношение измерено для одиннадцати различных энергий E_m от 10 до 90 МэВ (рис. 27). Порог реакции ¹⁹⁷Au(γ ,1n)^{196m2}Au определяется суммой порога реакции ¹⁹⁷Au(γ ,1n)¹⁹⁶Au и энергии изомерного уровня и равняется 8,67 МэВ. Изомерное отношение возрастает при увеличении E_m от порога реакции вплоть до 50 МэВ и при дальнейшем увеличении энергии до 90 МэВ остается примерно постоянной величиной 6·10⁻⁴. Приведенное в табл. 9 значение из работы [16] соответствует максимальной энергии тормозного спектра 30,1 МэВ.

Нами были дополнительно проанализированы спектры гамма-квантов остаточной активности, полученные при облучении мишени из ¹⁹⁷Au тормозным гамма-излучением с верхней границей 67,7 МэВ [17]. Полученное изомерное отношение при этой энергии составляет 6,5·10⁻⁴ и также указано на рис. 27.

25

Рис. 27. Относительный выход реакции ¹⁹⁷Au(γ,1n)^{196m2}Au для различных максимальных энергий тормозного спектра E_m . Квадраты соответствуют данным работы [16], приведенным к требуемому виду, черный треугольник – экспериментальный результат [15], крест – результат, полученный на основе данных [17], белый треугольник – экспериментальный результат [13,14] круг – результат настоящей работы.

Энергетическую зависимость выхода изомера $J^P=12^-$ можно объяснить возбуждением высокоспинового изомерного состояния за счет каскадных гамма-переходов. Основным механизмом образования ядра ¹⁹⁶Au в фотоядерных реакциях является возбуждение в ядре ¹⁹⁷Au ДГР и последующий его распад с испусканием нейтронов. Основное состояние ядра ¹⁹⁷Au имеет $J^P=3/2^+$. При испускании ядром нейтрона максимальное значение спина образовавшегося ядра ¹⁹⁶Au будет определяться орбитальным моментом, уносимым нейтроном

$$J_{\text{max}} = \frac{3}{2} + 1 + \left(l + \frac{1}{2}\right).$$

Из-за большого различия значений спинов основного и возбужденного состояний распады на них будут происходить с различной вероятностью.

Расчеты, выполненные на основе статистического подхода [15] и учитывающие образование составного ядра, испарение нейтронов и эмиссию каскада гамма-квантов, показывают, что распределение угловых моментов образовавшегося ядра имеет максимум при $J \approx 4-6$. Поэтому дальнешее увеличение полного момента может происходить только

за счет каскадных гамма-переходов после вылета нейтрона. Величина изомерного отношения зависит от величины параметра плотности уровней в статистической модели.

Использованное в работе [15] значение параметра плотности уровней статистической модели $a=20 \text{ M} \Rightarrow \text{B}^{-1}$ согласуется со значением $a=21,7 \text{ M} \Rightarrow \text{B}^{-1}$, использованным в работе [6] для расчетов сечения реакции (γ , *n*).

Дополнительным подтверждением этой гипотезы является измеренное в работе [18] изомерное отношение $\approx 0,1$ при возбуждении уровня с энергией 84,66 кэВ в фотонейтронной реакции. Спин этого изомерного состояния $J^P = 5^+$. Поэтому в фотонейтроном канале это состояние должно возбуждаться с большей вероятностью. Данные работы [18] по возбуждению изомерного состояния показывают, что оно возбуждается в 100 раз больше, чем состояние $J^P = 12^-$.

Изомерное состояние легко возбуждается в реакции (n,2n) и под действием тяжелых ионов, так как в этом случае в ядра ¹⁹⁷Au сразу вносится большой орбитальный момент и в конечном ядре возбуждаются состояния с большим J.

Теоретически рассчитанные изомерные отношения [15] находятся в хорошем соответствии с экспериментальными данными (табл. 9).

Заключение

Были измерены относительные выходы реакций 197 Au(γ ,1n) 196 Au, 197 Au(γ ,1n) 196m2 Au, 197 Au(γ ,2n) 195 Au, 197 Au(γ ,3n) 194 Au. Полученные выходы в целом соответствуют экспериментальным результатам более ранних работ [3-5,15,16], а также подтверждают правильность оценки экспериментальных данных в работе [6].

Сравнение измеренных выходов реакций 197 Au(γ ,1n) 196 Au, 197 Au(γ ,1n) 196m2 Au, 197 Au(γ ,2n) 195 Au, 197 Au(γ ,3n) 194 Au с экспериментальными и теоретическими данными работ [3-6,11-14] позволило получить достаточно согласованную картину формирования и распада ДГР на изотопе 197 Au.

1 Б.С. Ишханов, ВМУ Серия 3, 65(2), 3 (2010)

2 Д. Данос и др, УФН, **165**(12), 1345 (1995).

3 Veyssiere A., Beil H., Bergere R., et al., Nucl. Phys. A159, 561 (1970).

4 Fultz S.C., Bramblett R.L., Caldwell T.J., et al., Phys.Rev. 127, 1273 (1962).

5 Сорокин Ю.И., Хрущев В.А., Юрьев Б.А., Известия АН СССР, серия физическая, **33**, 1891 (1973).

6 В.В. Варламов, Б.С. Ишханов, В.Н. Орлин, С.Ю. Трощиев, Известия РАН, серия физическая, **74**(6), 874-881 (2010).

7 V. I. Shvedunov, A. N. Ermakov, and I. V. Gribov, Nucl. Instrum. Methods in Phys. Research A **550**, 39 (2005).

8 Трощиев С.Ю. Труды X межвузовской научной школы молодых специалистов «концентрированные потоки энергии в космической технике, электронике, экологии и медицине», Москва, 2009, под редакцией Б. С. Ишханова и Л.С. Новикова, с. 174.

9 Jagdish K. Tuli., Nuclear wallet cards. National Nuclear Data Center (http://www.nndc.bnl.gov/)

10 LUNDS homepage http://ie.lbl.gov/toi/

11 Ишханов Б.С., Орлин В.Н., ЭЧАЯ, **38,** 460 (2007).

12 Ишханов Б.С., Орлин В.Н., ЯФ, **71**, 517 (2008).

13 Сорокин А.А., Пономарев В.Н., сборник тезисов докладов XXVI совещания по ядерной спектроскопии и структуре атомного ядра, Наука, 449 (1976).

14 Сорокин А.А., Пономарев В.Н., сборник тезисов докладов XXVIII совещания по ядерной спектроскопии и структуре атомного ядра, Наука, 258 (1978).

15 Ю.П. Гангрский и др., ЯФ, **67**(7), 1 (2004).

16 Л.З. Джилавян и др., ЯФ, **33**(3), 519 (1981).

17 Чжо Чжо Тун, Автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва, 2007.

18 Ю.П. Гангрский, Н.Н. Колесников, В.Г. Лукашик, А.М. Мельникова, ЯФ, **67**(7), 1251-1256 (2004).

С.С. Белышев, А.Н. Ермаков, Б.С. Ишханов, А.А. Кузнецов, А.С. Курилик, К.А. Стопани, С.Ю. Трощиев

ВЫХОДЫ ФОТОЯДЕРНЫХ РЕАКЦИЙ НА ЯДРЕ 197AU НА ТОРМОЗНОМ ПУЧКЕ ФОТОНОВ С МАКСИМАЛЬНОЙ ЭНЕРГИЕЙ 29,1 МЭВ

Препринт НИИЯФ МГУ № 2010-2/859

Работа поступила в ОНТИ 26.04.2010