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Abstract

We consider brane world models with interbrane separation stabilized by the Goldberger-
Wise scalar field. For arbitrary background, or vacuum configurations of the gravitational
and scalar fields in such models, we construct the second variation Lagrangian, study its
gauge invariance, find the corresponding equations of motion and decouple them in a suitable
gauge. We also derive an effective four-dimensional Lagrangian for such models, which
describes the massless graviton, a tower of massive gravitons and a tower of massive scalars.
It is shown that for a special choice of the background solution the masses of the graviton
excitations may be of the order of 1 TeV, the radion mass of the order of 100 GeV, the
inverse size of the extra dimension being 1 TeV. In this case the inverse coupling of the
radion to matter on the negative tension brane is of the order of 50 TeV.

Booc 3.3., Bonobyes N.I1., MuxaiisioB FO.C., Cmoaakos M.H.

dusznyeckue creneHu CBOOOIBI
B CTAOMJ/IM3MPOBAHHBIX MOEJ/IAX MHPa Ha OpaHe

[Tpenpunr HUNAD MTV 2005-30/796
Annoramnusa

Paccmorpennr mojiesin Mmupa Ha OpaHe, B KOTOPBIX PACCTOSHUE MKy OpaHaMu CTaOU/IU3U-
POBAHO C MOMOIIBIO CKaJapHOTO 108 ['oibnoeprepa-Baiiza. st mpon3Bo/ibHOIT BaKyyMHO
KOH(UTYPAIMK IPABUTAIIMOHHOTO U CKAJISPHOTO MO/ B TAKMX MOJIE/ISX MOCTPOEH JIarpaHzKu-
aH BTOPOI BapHaIluu, U3ydeHa ero KaJuOpoBOIHAA HHBAPUAHTHOCTD, HAIIEHBI 1 PACIEILICHDI
B HOJXOJAINEll KaTuOPOBKe COOTBETCTBYIOIINE YpaBHEHUs ABHUzKeHHdA. Takke monydeH -
eKTUBHBII YeTbIPpeXMEPHBI JIarPaHzKUAH JI/Isi TAKUX MOJIeJIeld, OMUChIBAIoNnii 6e3MacCOBbIi
I'PABUTOH, HADOP MACCUBHBIX I'PABUTOHOB U HADOP MACCUBHBIX CKaJaspHbIX nosieii. [Tokazano,
9TO MPHU ONPe/IeIEHHOM BbIOOpe (DOHOBOI'O PellleHusi MaCcChl IPABUTAIIMOHHBIX BO30Y K IeHMI
MOTryT OBITH opsiika 1 T9B, macca paaunona — nopsaka 100 ['9B, a obpaTHBIi pa3Mep JI0MOJI-
HUTEJILHOTO M3MepeHus oKa3biBaeTcsa mopganka 1 THB. B stom ciyuae obpaTHas KoHcTaHTa

CBA3U peJNOHa C MaTepueil Ha OpaHe ¢ OTPUIATETbHBIM HATAKEHHEM OKAa3bIBAETCS MOPSIIKA
50 T»B.
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1 Introduction

Brane world models and their phenomenology have been widely discussed in the last years
[1, 2]. One of the most interesting brane world models is the Randall-Sundrum model with
two branes, - the RS1 model [3]. This model solves the hierarchy problem due to the warp
factor in the metric and predicts an interesting new physics in the TeV range of energies. A
flaw of the RS1 model is the presence of a massless scalar mode, called the radion, which arises
due to the fluctuations of the branes with respect to each other. Its interactions contradict
the existing experimental data, and in order the model be phenomenologically acceptable the
radion must acquire a mass, which is equivalent to the stabilization of the brane separation
distance. The latter can be achieved by introducing a five-dimensional scalar field with a
bulk and brane potentials, whose vacuum energy has a minimum for a certain interbrane
distance [4]. A disadvantage of the approach proposed in [4] is that the backreaction of the
scalar field on the background metric is not taken into account. This problem is solved in
the model proposed in [5].

Nevertheless, almost all the papers on the phenomenology of the RS1 model consider the
unstabilized model, just putting the radion mass by hand. In the present paper we are going
to show that such an approach is inconsistent, because the backreaction of the scalar field
on the metric leads to a renormalization of the parameters of the RS1 model. In particular,
the coupling of the radion to matter on the negative tension brane turns out to be smaller,
than in the unstabilized model.

2 Linearized gravity in stabilized brane world models

Let us denote the coordinates in five-dimensional space-time E = My x S'/Z, by {zM} =
{zt y}, M =0,1,2,3,4, = 0,1,2,3, the coordinate x* =y, —L <y < L parameterizing
the fifth dimension. It forms the orbifold, which is realized as the circle of the circumference
2L with the points y and —y identified. Correspondingly, the metric gy and the scalar
field ¢ satisfy the orbifold symmetry conditions

9 (@, =) = g (2,Y),  gualr, —y) = —gua(w,y), (1)
944(% —y) = 944(x,y), ¢(5U, —y) = ¢($ay)-

The branes are located at the fixed points of the orbifold, y =0 and y = L.
The action of stabilized brane world models can be written as

S =5,+5, 2)

where S, and Sy are given by
L
S, = 2Mm* [ d* dyR+/— 3
o fae [ ans o
L 1
Se = —/d4x /L dy <§9MN3M¢3N¢+V(¢)> V=g —
— / \/—g)\l(qﬁ)d‘lx—/ V—la(p)d .
y=0 y=L
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Here V(¢) is a bulk scalar field potential and A 2(¢) are brane scalar field potentials, § =
detg,,, and g, denotes the metric induced on the branes. The signature of the metric g/n
is chosen to be (—,+, 4+, +, +).

The standard ansatz for the metric and the scalar field, which preserves the Poincaré
invariance in any four-dimensional subspace y = const, looks like

ds* = e Wy, dotde” + dy* = yun(y)de™da?, (4)
¢(r,y) = ¢y), (5)

N denoting the flat Minkowski metric. If one substitutes this ansatz into the equations
corresponding to action (2), one gets a rather complicated system of nonlinear differential
equations for functions A(y), ¢(y):

W () + %5( )= 4A’¢’ + ¢ (6)
12MP(A')? + 3(V = 5(¢)%) =
L@ +V +Md(y) + Ay — L)) = —2M3 (—3A" +6(A")?)

Here ' = 0, = 0/0y.

Suppose we have a solution A(y), #(y) to this system for an appropriate choice of the
parameters of the potentials such that the interbrane distance is stabilized and is equal to
L. Tt means that the vacuum energy of the scalar field has a minimum for this value of the
interbrane distance.

Now the linearized theory is obtained by representing the metric and the scalar field as

1
gun(z,y) = ’VMN(y)‘F\/mhMN(x;y); (7)
ooy) = B+ (o) (®)

substituting this representation into action (2) and keeping the terms of the second order
in hy/y and f. The Lagrangian of this action is called the second variation Lagrangian and
has the form

- = —i(VShMN VRN £ 278 by BN — 270 BN 75 hgy— (9)
- Vs h vS h) + (A,)2 (%h}MNh,MN — hh) —
— A" (arwhMY = Lhh 4 g bV ) 4 s [ (Bawh Y — Lhn) +

4M3

+1 (hwh“” _ %BE) (A10(y) + A2d(y — L)+
(62 (= 0k + Thar MY + gy — 2R ) -
— (5 + B0(0) + 520(y = L)]) = £+ 200 ff 11—

M fonf — 12 (S + S20(y) + 200y — 1) ) |.

Here h = yaynh™N, h =,,h*, ¢ stands for the background solution and 57,; denotes the
covariant derivative with respect to metric vy/n. The normalization of fields in (7), (8) and
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(9) differs from the one adopted in [6]. It is more convenient in the Lagrangian approach
and does not effect the equations of motion.

Varying the action built with this Lagrangian and taking into account background field
equations (6), we arrive at the following equations of motion for the fluctuations of metric:

1. pv-component
10507 Py — 0,07 hgy — 0,07 gy, + 040shyy) + 30,0,h + L0, 0,has —
—304(Ohas + Do) + A Dy, + Do) + e (~0104H
0,07 huys — 0,07 h + 4A'O4h — 3A'D4huy + 0,0-h7™ + 2079y hiyy—
—4A’8"h4g) — Dy (247 — A") 4 2y (447 — A")—
i Y (f'0' + f(—4A'¢ + ¢")) = 0; (10)

2. pd-component

04(Ouh — 0" hyy) + 0" (O hys — Ophya) + 3A'0,hyy + 2]\/[38 fo' =0; (11)
3. 44-component

v 7 I q 7 1
0"(0 by — Ouh) — 6A'D" hya + BAOh + 5 <—h44V f% +f ¢) 0; (12)

4. equation for the field f
has (220(y) + 220(y — L)) — 2has(—44'' + 6")+ (13)
+ @' O4h — ' Oshag — 20/ 0"y — SA'Of + 200, 0M f—
—2f (@;Z + 554;15( ) + 554;25@ — L)) = 0.

We will also use the following auxiliary equation, which is obtained by contracting the indices
in the pv-equation:
010"y — 00, (h + Shay) — 640y (hay — ) — 20,040 — 6A'0 hy+
+30"0shys + 6hus(4A? — A") — 15 (¢ + f(—4A'¢' + ¢")) = 0. (14)

These equations are invariant under the gauge transformations

hiis (2, ) = by (,y) — (0 + 0€ — 2701 AES),
M%%wzh( y) = (uba + Duy + 20,48,
4(12( y) = has(x,y) — 20484, (15)
fO(,y) = fa,y) — 0s0&s, (16)



provided &y (x, y) satisfy the orbifold symmetry conditions
gu(xa _y) :gu(xay)a 64(37,—2}) = _64(xay)‘

These gauge transformations are a generalization of the gauge transformations in the
unstabilized RS1 model [2, 8]. We will use them to isolate the physical degrees of freedom
of the fields hy/n and f. Let us show that the gauge transformations with function &, allow
one to impose the gauge condition

1
3M3

Really, egs. (15), (16) imply the following equation for &,

(e hyy) — e 2y f=0. (17)

1 /
603 3M3 'f)
The standard theory of differential equations demands the coefficient in front of 04&4 to be

continuous, though in our case it is not so. To cure this flaw, we rewrite the equation as
follows:

040464 — 2A'0464 —

1
(¢')°& = —5(3477/44 — 2A"hyy —

0104(&ae™") + & (A" — (A')? — i (¢)?) = (18)
= —%67’4(34]7/44 — 2A'hyy — 3]\143 d'f) = w(x,y).

The functions (A’)* and (¢')? are smooth functions of y. Although function A” has §-like
singularities at y = 0,y = L, the singular terms drop from the equation, because &, is
equal to zero at these points. Thus, the factor in front of {,e™* is a smooth function, and
the equation for £,e~* in the interval [—L, L] can be treated by the standard methods. In
accordance with the general theory, the homogeneous equation, corresponding to (18), has
two independent solutions in the interval [0, L]; we denote them x;(y) and x2(y). Now we
can use the Green function method to find &, which gives:

_ A Fxiwxe(®) + xely) chin(z),, ol Vs —

e = [ G~ e 1)

oA X1(¥)x2(0) = x2(y)x1(0) /L —x1(L)x2(2) + x2(L)x1(2)
X1(L)x2(0) = x2(L)x1(0) Jo  Xi(2)x2(2) — Xx5(2)x1(2)

It is not difficult to check that the obtained function &, is equal to zero at the ends of the
interval and therefore can be continued to an odd function on [—L, L]. Thus, gauge condition
(17) really exists. We also note that this relation was obtained in [7] from the equation for
p4-component, in which only the scalar degrees of freedom were retained. Similar to the
case of the unstabilized RS1 model, the gauge transformations with functions &, allow one

w(x, z)dz.

to impose the gauge hy4(x,y) = 0, after which there remain the gauge transformations
satisfying
Or(e1e,) =0, (20)
Thus, we can use the gauge
—2A / —2A 1 p
(67" haa)' — ot ¢f=0 (21)

hﬂ4 - 0



Next we represent the gravitational field as

1 ~
h'uu = b;u/ + nyul/h’a (22)

with b, being a traceless tensor field (y**b,, = 0).
Substituting gauge conditions (21) and representation (22) into the u4-equation and into
contracted pv-equation (14), we get:

~04(0"buy) + 30,04(h + 2has) = 0, (23)
0" 0" by — 30,0°h — 30,0 has — 325+ (24)
+6A'04h — 32 hyy + 12A'91hay = 0.

Equation (23) suggest the substitution A = —2h44, which allows one to decouple the
equations for the fields b,,, has and f. Really, as a result of this substitution equations (23),
(24) take the form

04(0"by) =0, (25)
0"0"b,, = 0. (26)
It is not difficult to check that the residual gauge transformations (20) are sufficient to

impose the gauge |[§]
0"byy =0,

in which the former equations are satisfied identically.
Thus, in what follows we will be working in the gauge

(e hay) — =€ 240/ f =0, (27)
h’H4 == 0,

b=7"bu =0, b =0,

3M3

the residual gauge transformations now being

24, (z), "¢, (z) =0, Ce, = 0. (28)

é‘u =e€

Obviously, after the substitution h = —2hy, contracted pr-equation (14) and the pd4-

equation are satisfied identically in this gauge. Equation (10) for the uv-component reduces
to an equation for a transverse-traceless tensor field b, (z, y):

1 A 02b,,,,

3 <e2 ®0p,,, + a—y@‘) — by (2(4')* = A") = 0. (29)

This equation does not include the background scalar filed ¢(y) and is absolutely analogous
to the corresponding equation in the unstabilized RS1 model.

In order to find equations for the scalar field h44, we have to solve gauge condition (27)

with respect to f and to substitute the latter into equations (12), (13). This can be done

either using a regularization (sign(y))? = 1, or restricting the equations to the interval (0, L)
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and taking into account their singular terms with the help of boundary conditions. The latter
technique turns out to be simpler and we will use it.

Equation for 44-component (12) simplifies considerably, when rewritten in the interval
(0,L) in terms of a new function ¢ = e 2AWh,,(x,y) and using the expression for the
potential V' in terms of A and ¢ (6):

" 1\2
"+ 24’ (A' - g) — gj\/%g + 0,0"g = 0. (30)

Let us note that substitution (22) and gauge condition (27), which decouple the equations
of motion, in terms of ¢g take the form:

1
h/u/ = bp,l/ - §nul/ga hay = €2A(y)g, (31)
1
/ —2A 1
- = 2
B =0, b=y, =0, b, =0. (33)

Gauge condition (32) solved for f in the interval (0, L), looks like

36214 /
Substituting this expression for f into eq. (13) gives an equation, which is obtained by
differentiating eq. (30) with respect to y, and boundary conditions on the branes:

(853 = %) o+ 0,0%], 0= 0. 34

2 17"
(%654?22 * %’) 9 = 0,0"gly=1.—0 = 0.

Thus, our gauge choice and the substitution enabled us to decouple the equations of motion.
This means that the fluctuations of the metric and of the scalar field against any background
given by a solution to egs. (6) are described by two fields, — tensor field b, (x,y) and scalar
field g(z,y). Their classical equations of motion are given by equations (29) and (30), (34)
respectively.

3 Mode decompositions

Let us study first the modes of the tensor field b,,(x,y), which satisfies equation (29).
Substituting into this equation

bu(z,y) = cuyei”m@/}n(y), Cuy = CONSt, p? = —mfb,

restricting it to the interval (0,L) and replacing the singular terms by the boundary
conditions, we get:

T = 2(A)? = A, = —m2e,, (33)

dy?
Uy, + 24 |y=0 = Yy, + 24y |y=—0 = 0.

8



The boundary conditions suggest a substitution v,, = exp(—2A4)w,,, which turns this equation
into

% (6*4“@%) = —mie Huw,, (36)
Wnly=+0 = Wply=r—0 = 0.

We see that the eigenfunctions w, are solutions of a Sturm-Liouville problem with von
Neumann boundary conditions. In accordance with the general theory [9], the problem at
hand has no negative eigenvalues for arbitrary A, only one zero eigenvalue, corresponding
to wy = const, and an infinite number of positive eigenvalues, asymptotically given by the
formula

2,2 L
m?2 = 7r12n , 1= / et W dy. (37)
0

This formula should be specified for finding the masses on different branes. We recall that the
masses of excitations on each brane should be calculated in the Galilean coordinates [6, 8],
for which A(y) is equal to zero on the corresponding brane (we recall that coordinates are
called Galilean if g, = (—1,1,1,1) [10]). Thus, the latter formula can be explicitly adopted
for calculating masses on the branes as follows:

| = fOL e(AW=40)dy  for the brane at y =0, (38)
[ = fOL A=A dy  for the brane at y = L, (39)

which is valid for an arbitrary A(y) satisfying equations (6), because they define it up to an
additive constant.

The eigenfunctions {1, (y)} of eigenvalue problem (35) build a complete orthonormal set,
the eigenfunction of the zero mode being

Yo(y) = Ne 240 (40)
Expanding b, in this system
b;u/ = Z qu(aj)wn(y)a (41)
n=0

we get four-dimensional tensor fields b7, () with definite masses. An important point is that
due to the form of the zero mode eigenfunction residual gauge transformations (28) act only
on the massless field bgy(x) and provide the correct number of degrees of freedom of the
massless graviton [8].

In order to find the mass spectrum of the scalar particles described by equation (30) let
us substitute

g(z,y) = e guly), p°=—pd,
into this equation. As a result, the equation and the boundary conditions for g,(y) take the
form:

1 /\2
2 7
(%654?21 - %’) I+ 1 guly=10 = 0, (43)
> "
(%554?22 + %) In = M€ gnly=r—0 = 0. (44)



Let us write equation (42) in the Sturm-Liouville form:

d 62A 62A ) 64A
! —
iy ah) ~ g = i e )

It is not difficult to see that the operator in the eigenvalue problem for this equation with
boundary conditions (43), (44) is not self-adjoint. Nevertheless, these boundary conditions
look like the usual Sturm-Liouville boundary conditions and lead to a number of general
assertions about the spectrum and the eigenfunctions of the problem at hand.

Multiplying equation (45) by g,, then integrating over (0, L) and integrating by parts in
the term with derivatives, we get:

L (44 2 A edA 2 A A
I <fg W|gn|2dy + (%65(221 - q;—/) W|gn|2|y:+0 + (%65(222 + %’) W|gn|2|yL0> =

L L (24
61\1/[3 fo €2A|gn|2dy+f0 @W@%Pd‘y-

This means that if

1 52)\1 " 1 (52)\2 "
G =5 w0 (35 +5) oo "
all the eigenvalues of the eigenproblem are real and positive. The standard technique for
proving the orthogonality of eigenfunctions gives in this case for m # n

L e4A _
_f[] ((;nggndy = (47)

-1 -1
52/\ 1! 4A _ 52)\ Y 4A _
=35 %) Gromalent (5 +5)  GEmomleio

Thus, the eigenfunctions of this problem, corresponding to different eigenvalues, are not
orthogonal with respect to the weight suggested by the form of equation (45).

It is very difficult to prove rigorously that this set of eigenfunctions is complete. We
can just argue that due to the special form of boundary conditions (43), (44) the set of
eigenfunctions of the eigenvalue problem under consideration is complete. Really, for the

PA2 oo the eigenvalues drop from the boundary

592
conditions, and the operator in the equation becomes self-adjoint. Therefore, for 1 T

— 00
27542
the eigenfunctions of the problem under consideration go to the eigenfunctions of a Sturm-
Liouville problem with a self-adjoint operator, which build a complete orthogonal set. The

orthogonality of the eigenfunctions for 1 P

2545 — 00 can be also seen in formula (47). Thus,
we assume that the eigenfunctions {g,(y)} of the problem (42) - (44) form a complete
denumerable non-orthogonal set. We would also like to note that for u> — oo boundary
conditions (43), (44) go to ¢,(0) = ¢,(L) = 0, and therefore for large m or n the integral in
(47) is close to zero. Such a set of functions may be called asymptotically orthogonal.

It is easy to understand that the eigenfunctions g,(y) can be chosen to be real. Then

five-dimensional scalar field ¢g(z,y) can be expanded in this system as

parameters of the scalar field potential %

g($, y) = Z Son(x)gn(y)v (48)
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where the four dimensional real scalar fields ¢, (z) have masses p2.

Now we can find the effective four-dimensional action for the system. Substituting (22),
(31)-(33) into Lagrangian (9), we find that the tensor field and the scalar field Lagrangians
decouple. Then substituting expansions (41), (48) into these Lagrangians and using equations
(35), (42), assuming the eigenfunctions {t,} and {g,} to be appropriately normalized and
integrating over the coordinate of the extra dimension, we find that the reduced tensor
field Lagrangian is a sum of the standard four-dimensional Lagrangians of tensor fields with
masses m,,, whereas for the scalar field Lagrangian we get

3 uv 2 t 2A 6M3 ro
»Cscalar = _Z Z [77 au@naugok + /Lkgon@k] dye InGr + Wgngk : (49)
nk

0

Now consider the integral over dy. Integrating by parts the term with derivatives, using
equation (45) and boundary conditions (43), (44), we arrive at the result

/AN

L 64A 2 1 64A
61y, M (fg @2 Ingrdy + (%%qf‘zl - %) W9n9k|y:+0+

-1 e4A
+ (;65& + %) (¢/)2gngk|yL0> .

For real g¢,(y) equation (47) now implies that this expression is equal to zero for n # k.
Assuming the eigenfunctions {g,} to be appropriately normalized, we find that the reduced
scalar field Lagrangian is also the standard Lagrangian, and the complete reduced action is

1 1
Serr = =72 / da (070 00, +mih " hy,) = 5> / dz (00”0 + pisprspr) - (50)
k k

We see that the effective Lagrangian of the tensor fields coincides with the one of the
unstabilized model [8].

Now we are able to find the couplings of the four-dimensional fields b, (z) and @, (z),
to matter on the branes, which are defined by the coupling of the fluctuations of the five-
dimensional gravitational field h,, to matter on the branes. The latter is given by

by (z,0)T, () —dety,, (0)dx +

W(x,L)T/E?) —dety, (L)dz, (51)

V8 V38 B>
(1) (2)

where T}/ and T};,/ are energy-momentum tensors on brane 1 and 2, respectively.

In what follows we restrict ourselves to considering the fields on the brane at y = L only,
which we assume to be "our" brane. Substituting decompositions (41), (48) into (51) we find
that the interaction of the tensor and the scalar fields with matter on the brane at y = L in
the Galilean coordinates is

\/% : (%( T‘“’+an )T — Zgn onl )d:c (52)

Thus, the couplings are defined by the values of the wave functions on the brane. The latter
can be found only if we specify the background solutions A(y) and ¢(y).

11



4 Specific example

The considerations in the previous sections allowed us to find the general structure of the
brane world models stabilized by the scalar field. To make predictions for the masses and
the coupling constants we must take specific potentials for the scalar field and a particular
vacuum solution of system (6).

To find an analytic solution to this system we will use the results of papers [5, 11]. Let
us consider a special class of potentials, which can be represented as

1/ oW\? 1,
vo =5 (5 ) ~ g

It is easy to check that if we put

W(9), (53)

then equations (6) are valid everywhere, except for the branes. In order the equations of
motion be valid everywhere, one needs to finetune the brane potentials A 2(¢).
Let us take W(¢) to be
W = 24M?*k — ug?, (54)

so that V(¢) is a quartic potential. Finetuned potentials on the branes can be chosen as
follows:

A=W (1) + W' (p1)(6 — b1) + Bi(d — ¢1)?, (55)
Ay = =W (dy) — W'($2)(6 — ¢2) + B3 (¢ — ¢2)*. (56)

The parameters of the potentials k, u, ¢; 2, 1 2, when made dimensionless by the fundamental
five-dimensional energy scale of the theory M, should be positive quantities of the order O(1),
i.e. there should be no hierarchical difference in the parameters.

For such a choice of the potentials the solution of the equations of motion is given by [5]

o(y) = ¢y e (57)

_ ¢% —2uly|
The interbrane distance is defined by the boundary conditions for the field ¢ and is expressed

in terms of the parameters of the model by the relation

L=l <%> | (59)

Thus, we see that the brane separation distance is stabilized.

Let us study the mass spectrum of tensor particles, which is defined by equation (35).
The zero mode solution for arbitrary A is given by (40). For our choice of A it is impossible to
find exact solutions for other modes. Therefore, in what follows we will use an approximation

12



ul < 1, which is rather general and physically interesting [6]. Keeping in A only the terms
linear in y, we get
¢

24 M3
Thus, in this approximation equation (29) for the tensor field coincides with the equation of
the unstabilized model, where a substitution ¥ — k was made. This equation can be solved
exactly, and the formulas for eigenfunctions and eigenvalues were discussed in detail in [8].
In particular, in this approximation the normalized functions vy for my = 0 look like

A(y) :l~c|y|, k=k— u. (60)

: ke
_ —2k|y] =
Yo(y) = Noe : Ny = 1)) (61)
in the coordinates, which are Galilean on the brane at y = 0, and
voly) = Noe IR, Ny = ot (62)

in the coordinates, which are Galilean on the brane at y = L. Formulas (37), (38), (39) give
the following mass spectra

mZ2 = w22ne 2 (the brane at y =0), m2=x2%k?*n? (the brane at y=1L). (63)

Let us study now the mass spectra of the scalar particles. Equation and boundary
conditions (42) - (44) for our choice of the potentials and background solutions take the
form:

gn +24', — 2954, — Ghg, = —p2e*g,, ()
(B2 +w)gy + 126> guly—10 = O, (65)
(83 = u)gp, = Hn€* gnly=1-0 = 0, (66)

To find explicitly the eigenfunctions and eigenvalues of the problem we will use the same
approximation vl < 1, which now implies

uy:uL%<uL<<1.

Substituting the explicit form of ¢ into (64) we get
¢, 2 24
" 11 ’ o
G 249, + 2ug’ — L FW G + 417 g = 0. (67)

We solve this equation in the coordinates, which are Galilean on the brane at y = L. In
this case A(y) is expressed in terms of k£ (60) as:

Aly) = k(y - L).

We have already found that for 32 — u > 0 all eigenvalues of this problem are larger than
zero. Therefore, we introduce a new variable by the relation

z = ﬁeky’“, ﬁe’“ <z< %

k k
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In terms of this variable the equation takes the form:

d%g 2u\ ldg b? &2 u?
> = ]-== l——=)gn= =1 .
P <3+ k > 2z T < 22> gn =0, 6.M3 k2 (68)

Let us look for g, in the form g,(z) = 2°t,(2). Then the equation for ¢, is

2u
f;;‘+<2a+3+%“> %%+G(G+Zi+7)tn+<1—2—Z)tn:0. (69)
In order to turn this equation into the Bessel equation we put a = — (1 + %) and get
Cf:;; %%4‘ (1—2‘—5) t, =0, o =a+b. (70)
The general solution to this equation is
tn(2) = AJo(2) + BJ_o(2), o= Va2 + 02
Correspondingly, we get
gul2) = 2 (1) (AJa(2) + BJ_a(2)) (71)
The boundary conditions in terms of z look like:
Fogn + (5 + )22 o0 =0, (72
k2gn — (B3 — ) G |oymmm =0

Below we show that for reproducing the Newtonian gravity on the brane at y = L for
strong five-dimensional gravity we must take kL ~ 35. In this case z; = ”7”6_“ ~ 0 is a very
good approximation, and the boundary condition at zero allows us to drop the singular term
with J_,(2) in g,(2) since B/A ~ =2 and the corrections due to this term are negligible.

Thus, up to normalization g,(z) can be written as
gn(z) = Z_(H—%)Ja(z),

The second boundary condition at 2z, = “7" gives an equation for the mass spectrum of the
scalar particles:

ko B3—u

Expanding the Bessel function for small z5 up to the second term and keeping the terms
up to the order 22 in the equation, we get the following relation for the mass of the lowest
scalar excitation:

];; 2
(1 TP ) Ja(2) = 23Ja1(25) = 0. (73)

, AR (-14a—5)(1+a)(8 - u) (74)
H = k(1 + o)+ (1+a—%) (8 —u)
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For small u/k it reduces to
u2 = ¢1u’ B —u
LO3MP B2 4k

which for 32 — oo coincides with the results of papers [6, 7] in our approximation. The next
roots of equation (73) are of the order k2, and the asymptotic formula of the general theory
[9] for large n gives p2 = w2k?n?.

The normalization condition for the eigenfunctions {g,(y),n = 0,1, ...} of the problem
(42) - (44), which gives the canonical kinetic terms in (50), is the following:

(75)

3 [k 6M3
3 /0 dye*” <gngk + Wg;g;’ﬂ) = Ok (76)

The normalized functions g,(y) look like

guly) = A (%M) R (“—’“’f) | (77)

M

o (sa/8) " (V7 (saB)" B2 /BT 0 4372 2 (/)

A, = - +
M 33, 22+ DET(2 4+ )T (1 + ) B —u

Here H(a,y) is the Struve function. We also note that in our approximation the boundary
term at y = 0 is dropped in the normalization condition.

Now that we have found explicit expressions for the wave functions of the tensor and the
scalar fields, we can find their coupling constants to matter on brane 2.

The coefficient in front of the zero mode of the tensor field b7, () in (51) can be expressed

in terms of the Planck mass on the brane at y = L as 1/4/8M3,. Then equation (62) implies:

M=

1 1 1 k

= N, = _ , 78

VBMZ,  BM3 ' /SN (%L — 1)} 8)

which gives a relation between the Planck mass on the negative tension brane and the
fundamental five-dimensional energy scale M

eZkL -1

Mp, = M° (79)

Again we have obtained the formulas, which coincide with the formulas of the unstabilized
model after replacing k — k. Therefore, in order to get the correct value of the gravitational
constant on the brane at y = L on can take the same values of the parameters, which are
used in the unstabilized model, i.e. M ~ k ~ 1TeV, kL ~ 35 [6]. Then the parameter u
may be of the order of ten GeV, and the radion mass (75) may be of the order of hundred
GeV.

The exact solution for the zero mode of the tensor field (40) allows one to get the relation
between the Planck mass on the brane at y = L and the fundamental five-dimensional energy
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scale beyond the approximation used here. Other possible approximations were studied in

paper [6].
Formula (52) shows that the coupling constant of the n-th scalar mode to matter is
defined by the value of its wave function on the brane and is approximately given by the

relation .
—(14u/k
:_LJ <@)<@>(+/).

v\ k) \k

For the radion, this constant is

t B3 + 4k?

Voarsk | B —u’

and turns out to be of the order e;' ~ 50TeV for the above given values of the model
parameters.

€~ —

5 Discussion

In the present paper we have considered the general structure of the brane world models
stabilized by the scalar field. For an arbitrary background configuration of the gravitational
and scalar fields, satisfying the equations of motion for a stabilized model, we constructed
the second variation Lagrangian and derived the equations for the fields describing the
fluctuations against the background. A convenient gauge and a substitution were found,
which enabled us to decouple the equations of motions and to isolate the five-dimensional
degrees of freedom. It was shown that the tensor sector splits from the scalar one and has
the same structure, as in the unstabilized model. Namely, for any background there is a
massless four-dimensional graviton and a tower of massive tensor fields, which represent the
four-dimensional degrees of freedom in the tensor sector.

The structure of the scalar sector was found to be more complicated: the operator of the
mass squared turned out to be non-self-adjoint and its eigenfunctions to be non-orthogonal.
Nevertheless, the structure of the five-dimensional action is such that the non-diagonal
interaction terms of the four-dimensional scalar modes vanish.

For a particular choice of the background solution and the parameters of the model it
was found that the influence of the scalar field background on the tensor excitations reduces
to a renormalization of the parameter k of the unstabilized model, which is replaced by k
(60). In this case the inverse size of extra dimension and the masses of tensor excitations
may be of the order of 17°eV, the radion mass being of the order of 100GeV. For this choice
of the parameters the radion coupling constant to matter on the brane at y = L turned out
to be approximately ten times smaller, than for the same choice of the parameters in the
unstabilized model.

This result does not mean that the radion coupling to matter on the negative tension
brane is always weak in the stabilized models. It is quite possible that it can be much larger
for a different choice of the model parameters. In this case the radion mass and the masses of
the tensor excitations must also shift. To find out, whether it is really so, one has to scan the
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whole parameter space of the model. The coupling of the radion to matter can also become
stronger due to the radion-Higgs mixing as discussed, for example, in |7, 12, 13, 14].
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