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Abstract. The work is devoted to the peperalization of the Dirac equation for a flat
locally anisotropic, i.e, Finslerian space-time. At first we reproduce the corresponding
metric and a group of the peneralized Lorentz transformations, which has the meaning
of the relativistic symmetry group of such event space. Next, proceeding from the
requirement of the peneralized Lorentz invariance we find a peneralized Dirac equation in its
explicit form. An exact solution of the nonlinear generalized Dirac equation is also presented.
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1 Introduction

In spite of the impressive successes of the unifised ganpge theory of stropng, weak and
electromapnetic interactions, known as the Standard Model, one cannot a priori rule out
the possihility that Lorentz symmetry underlying the thecry is an approximate symmetry
of nature. This implies that at the energies already attainable today empirical evidence may
be obtained in favour of wiclation of Lorentz symmetry. At the same time it is obvious that
such effects might manifest themselves only as strongly suppressed offects of Planck-scale
physics.

Theoretical speculations sbout & possible viclation of Lorentz symmetry continue for more
than forty years and they are briefly outlined in [1]. Neverthdess we note here that, along
with the spontaneous brealing [2], ooe of the first and, as it appeared subsequently, fruitful
ideas relating to a possible violation of Lorentz symmetry was the idea [3] according to which
the metric of event space diffors from Minkowski metric and the physically equivalent inertial
refarence frames are linked by some transformations which differ from Lorentz ones. In [4]
such transformations were called peneralized Lorentz transformations. Note also that the
idea about the existence of generalized Lorentz transformations was suggested in connection
with the situation in the physics of ultra-high energy cosmic rays, namely, with the absence
of the Greisen-Zatsepin-Kuz'min effect (the so-called GZK cutoff) predicted [5, €] on the
hasis of conventional rdativistic theory. The absance of the GZK cutoff has yet not been
explained convincingly and still reanaing the main empirical fact which indirectly speaks in
favour of viclation of Lorentz symimetry.

Interest in the problem of viclation of Lorentz and (UPT symmetries has revived in recent
years [7] in conoection with the construction of a phencmenclopical theory reffored to as the
Standard-Model Extension [§].

In the presant work, which is in essence devoted to the same problem, we procesd from
the assumption [§] that phase transitions with breaking of gauge symmetries should be
accompanied by phase transitions in the geometric structure of space-time.

QOur study is based on the fact [10] that the Lorentz symmetry is oot the only
possible realization of the relativistic symmetry. Another admissible realization of the
relativistic symmetry is obtained with the aid of nonunimodular matrices belonging to a
group of the peneralized Lorentz transformations. In contrast to the conventional Lorentz
transformations, the genmeralized ones conformally modify Minkowski metric but leave
invariant the corresponding Finslerian metric which describes a flat locally anisotropic space-
timne. Thus, from the formal point of view the locally anisotropic space-time appesres as the
necessary consequence of the existence of a proup of the peneralized Lorentz transformations.
As for the physical nature of the anisotropy, there are same reasons to suppose that a fermion-
antifermion condensate, which may arise [11] (instead of elanentary Higes condensate) in
the spontanecus breaking of initial gaupe symmetries, turns out to be anisotropic and its
anisotropy determines the local anisotropy of event space. Obwviously, verification of this
hypothesis is far from being trivial. Therefore the opening investigations in this direction, as
presented here, are simed at the mest fundamental problem, namely, at the generalization
of the Dirac equation for the locally anisotropic space-time.



2 Flat locally anisotropic space-time as a geometric
invariant of a group of the generalized Lorentz
transformations

Consider the metric [4] of a flat locally anisotropic space-time

ds? = {{dzu_udz}ﬂ]r{dzg—dzﬂ}. (1

A2 — dz?

Being not a guadratic form but a homogeneous function of the coordinate differentials of
degres two, this metric falls within the category of Finsler metrics [12]. It depends on two
constant parameters r and @7, in which case the unit vector @ indicates a preferred direction
in 3D space while r determines the magnitude of space anisotropy, characterizing the depree
of deviation of the metric (1) from the Minkowski metric. Thus the anisotropic event space
(1) is the peneralization of the isotropic Minkowsld space of conventional special relativity
theory.

The J-parameter noncompact proup of the peneralized Lorentz transformations, which
leave the metric (1) invariant, appears as

e =D{ﬂ,v}.R;{ﬂ,H} L{{ﬂ}zk, {2)

where ¥ denotes the velocities of moving (primed) inertial reference frames; the matrices
Il{w) represent the ordinary Lorentz boosts; the matrices R}{ﬂ,u} represent additional
rotations of the spatial axes of the moving frames around the vectors [v 2] through the

angles
-1 -uﬂ,xf,ﬂ}[w]ﬂ}

gazarccm{l (1 — /el

of relativistic aberration of 175 and the diagonal matrices

f 1=—w/c "
Do, v) = (—m) I,

the additional dilatationsl traosformations of the event coordinates. The structure of the
transformations (2} ensures the fact that in spite of a new geometry of event space the
J-velocity space remains Lobachevsld space.

With the inclusion of the 1-parameter proup of rotations about ## and of the 4-parameter
group of translations the inhomogeneous isometry group of the Finslerian event space (1)
turns cut to have sight parameters, If the third spatial axis is chosen along @7, then its
penerators can be written as

X, = —{z'po+:2) — (zipa — 2'p1),

X2 = —{(zpo + 2%} + (F'p2 — 2¥m),

Xy = =rz'p; = (po + ="M},

Ry, = z%p —zlpg; m = 8/dzt.



These penerators satisfy the commutation relations

[X1Xz] =0, [FlaXa) =0

[XH-XI] = X, [R;..Xl] = X,

[XHXE = X3, [R.1X2] =—X1;

[p'ip_f] =0 1

[X1pa] = 11, [Xapa] = P2, [Xapo] = o0 +pa, [Fapd) =0,
[Xip ] =po+pa, [Xam] =0, [Xap] = ’-"P [Rap1] = P2,
[X1p2] = 0, [Xope] = po+pa, [Xapa] = [Rapa] = —p1,
[X1pa] = —p1, [Xzpa] = —pa, [Xapa] = +pu, [Fiapa] = 0.

As one can see the 8-parameter inhomogeneous isometry group of the space-time (1) is
a subgroup of the 11-parameter extended Poincaré (similitude) group [13] whereas the
homogeneous one is isomorphic to the corresponding 4-parameter subgroup (with the
generators X, , Xa, Xa|r—q, Ha) of the homogeneous Lorentz group. It is shown in [14] that
the §-parameter homogeneous Lorentz proup has no b-parameter subgroup while the 4-
parameter subgroup is unique (up to isomorphisms}. Thus, the transition from Minkowski
space to the Finslerian event space (1) implies a minimum of symmetry-brealking of the
Lorentz symmetry. However the relativistic symmetry is maintained in the form of the
generalized Lorentz symmetry.

3 Covariant formulation of the theory.
Generalized relativistic point mechanics

Becanse of nonunimodularity of the matrices £ = DR}Li represanting the geoeralized
Lorentz transformations {2), the transformational properties of some peometric entities
turn cut to be chanped as compared with conventional special relativity theory. For
instance, a 4—1mlume element dz%%z is no longer invariant but is a scalar demsity of
we:lght -1, i.e, it transforms as follows: de'0diz’ = J-ldz%z, where J is the Jacobian,
= |fz* ,r"a.':’-"| = |,E_lk| = D', Similarly, matrices 1 and 7 hd.‘i.rlng the identical forms
f.r}”,, = diag (1,-1, -1, —1} and 7°* = diag{1,—1,=1,=1) in all frames of reforence rdated
by the transformations {2} are no longer invariant tensors but are, respectively, a covariant
tensor density of weight —1/2 and a contravariant tensor density of weight 1/2. This
statement signifies that 7, = J -Lf Eﬁ_ldﬁ_l:‘mm = T and T]l"ik = JY ﬂﬂﬁfu"?‘m = "’?ik
Then it is clear that 7 = 6 is a unit tensor. Later on we shall be using 7;,, and 7 to
lower and raise indices. The process, however, will be accompanied by a change in weight.
We shall be also in need of an entity »' which indicates a preferred direction in 41 space-
time and whose components have the same values, {#" =1, 2} , in all frames of reference
related by the transformations (2). It is easy to verify that o = JUHFUI ik — o e,
that +° is a contravariant vector density of weight (1 + r)/{4r}, in which case v, =0 is
an invariant equation.
Using the ' and 7 one can represent the metric (1) as an explicit invariant of the
transformations (2): ds® = [(vidz®)?/dz;dz’] dzwdz® . With the aid of this expression we
arrive at the relativistically invariant action for a free particle io the flat anisctropic space.



The action and its variation appear as
b b
S=—mfds, £S=—fp.id£m'i.

[r}

Hereafter we put ¢ = A = 1. The principle of least action under the condition (8z°) |z =
{6z'}|s = O leads to p; = const, i.e, to rectilinear inertial motion. And if one varies the
coordinates of point b under the condition p; = const, then p, = —85/8z° | ie., p; is 2
canonical 4-momentum. Since 7* is a contravariant tensor density of weight 1/2 and since
Pk 18 & covariant vector it is dear that the 4 momentum p* = (p", p) = w;“"p;, is transformed
as g contravariant vector density of 1/2, ie.,

Pt = JY p* = DRI o, (3)

Thus we have arrived at the generalized Lorentz transformations for 4-momenta. Note that
the dilatational transformations of p' are inverse to those of z° { cf. (2} }. In an explicit

form .

. dzt dzt i Sz dT?

¢ =m _ e - {1-r) + frp " ] {4}
\ fd.zjd:ﬂ dz _dzs u dz™

Since the direction of ¢ is not aligned with the direction of dz’ we introduce {apart from
p° ) the so-called kinematic 4-momentumn &° which has the same transformational properties

as o .
o daf vzt
E=ml=n) it (\/dmjdﬂ) ' ®

Tuking into account the equation 2" = () we obtain the following relations

&k ; i T pupt ;
+{1—T}knv“v’ g _P_{1+T}p“v“v' ()

P‘i — ki
As for the F-velocity of a particle, it is determined by the formula » = & /&°.
The components of canonical 4-momenta satisfy the mass shell equation

(v’ /o] pap® = mA(1 — )1 + £)0HT) )

This equation is an invariant of the transformations {3). The same mass shell but in & space
of kinematic 4-momenta is described by the equation

[{wik' P 1R kak® = m2(1—r)2. {8)

The last two egquations lead us to the important conclusion, namely, that the motion of
free massless particles in anisotropic space is similar to their motion in isotropic space,
1.&, massless particles do not perceive the space anisotropy wheress the motion of massive
particles is analogous to that of quasiparticles in a crystalline medium.

According to (8), the mass shell for r # {) is a deformed two-shested hyperboloid
inscribed into a light cone. In order to show how its deformation changes with the magnitude
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r of space anisotropy it is reasonable to procesd from the relations (5) which determine
four-dimensicnal coordinates of points belonging to the upper shest of the deformed
hyperholoid as explicit functions of 3-velocities » = d:l:fd:nu . The results of calculations,
presented in Fig. 1 clearly demonstrate the fact that, if  — 1, the mass shell in a space of
kinematic 4-momenta converges {nonuniformly) to a light cone

Ma=z =shell at r=0; Q0xwx0.35 Mazz= =shell at r=0.2; 0zxwvx0.35
ﬂkz 4 .Dkz
2.
2.
k" o k" o
-2t A e R
- d
2 v} 2 -d -2 u} 2 4
1}':1 1!
Mazz =hell at r=0.86: Oxwsl.95 Maze =hell at r=0.8; 0zwx0.35
4 v}
'1':2
2.
2
k" O k" O
-2
.2.
4 k
E) 2z i 2 4 el o =
1
k !

Fig.1: Parametric 30 plots of the mases shells in a space of kinemati: 4-meanenta.

As for the canonical momenta p | there is nonurniform convergence: p* — &° + mu’ | where
kik' = (). Physically this mesns that the effective inertial mass of a particle present in
anisotropic (Finslerian) space depends on the magnitude = of a constant anisotropy field
and disappesars at all if r reaches the value equal to unity.

Thus, with a view to pemeralizing the Dirac Lapranpian for the Finslerian space-time,
we have arrived at the following puiding princple: a peneralized Lagrangian, in the limit
r =1, must be reducible {up to a 4-divergence) to the standard massless Dirac Lagrangian.
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4 Transformational properties of fermion-antifermion
fields in the flat Finslerian space-time. Generalized
Dirac equation and its planewave solutions

Starting to generalize the Dirac Lagrangian for the anisotropic Finslerian space-time (1), first
comsider the standard massless one {4/2) (197 8n1 — 8a107™19) . In the preceding Section we
have drawn the condusion that massless particdles do not perceive the space anisotropy.
This means that the Laprangian considered need not be meodified and it can be used as
the lanetic term of a massive generalized Dirac Lapgrangian. Since under the peneralized
Lorentz transformations (2} the 4-volume dz%’z behaves as a scalar density of weight —1
and the action must remain invariant, it follows that the kinstic term ( just as the entire
Lagrangian } must be a scalar density of weight 1. This condition is fulfilled in the case
where the generalized Lorentz transformations {2) of the coordinates are accompanied by
the following transformations of the fields 1 and 0

¥(z') = DV5kSub(c) = SV S¥(a), (9)

i) = ) s (10)

where the matrices 5 = 535, satisfy the standard condition 5198 = Aly*, in which
case Al = R}Li; the matrices 5, and 5, reprasent, respectively, the Lorenz boosts and
additional rotations of hispinors. In an explicit form

S, = 1+«.,/'mf_ 1—+/1—v2 oy (11)
¥ o Y 2vi—w?  |o]

5o \/1_{1—1..-"'—1—119}[ﬂv]9 roi VIS [y

21—} v i 2(1—wer)  |v| =, (12)
where © denotes the velocities of moving (primed) reference frames, }® are the Dirac
matrices, 3 = diag (o, o) and o are the Pauli matrices. Thus in the flat Finslerian space-
time (1) the fields 1) and 1) are, according to (9) and (10), hispiner density fields of weight
3/8.

In order to peneralize the massive term —main) of the Dirac Lagrangian we remind that
a generalized massive term, like the kinetic one, must be a scalar density of weight 1. It can
be verified that for the bispinor density fhidds: *:,Ert,b is a scalar density of weight 3/4 , 1,57“1,{:'
is & contravariant vector demsity of weight 1, [{pathy™ 10/ )?]2end is a scalar density of
waight 1 and [{(#07™0 /1m0 Y2] " 24) is a scalar, in which case the latter Finslerian form
generalizes the scalar bilinear form 191y of conventional theory.

Now we are able to write down a Lagrangian for the bispiner density fields representing
such a peneralization of the standard Dirac Lagranpian that the corresponding field equations
turn out to be invariant under the group of generalized Lorentz transformations. It appears
T

/2

T om 2"
[ U T
i v

£=

(5" 0p — ™) = m

B | za.



This Laprangian leads to the following peneralized Dirac equations:

FYrdath—m ("’“3“) ] {1—T}I+r( ‘b‘i) v.{r“}'nf-‘ =0, {13)
|\ ¥nf

Wy +m (v}"jrﬂ)z] 1,5{1—?}1+T( T'Eﬂ;) Ir‘.;}’“} =1, (14)
|\ p nl

where ™ = 197", The operation: 1) (13) (14} 1) provides the squation &, = 0. Thus
7% is a preserved currant. And at last, owing to the operation: 10 (13) - {14} 49, we conclude
that £ = on the solutions of egs. (13} and {14).

Due to traoslational invariance, the generalized Dirac equations (13}, (14) must admit
solutions in the form of plane waves 1{z) = u{p)exp{—4p,z®). This mesns that the
amplitude u{p) must satisfy the equations:

o o | e e P it (15)
fip. [»}P- (ﬂ;:L){{l—r}I+r(%) p,,,rf‘}] —0, (16)

/2

paiiyu = m [("”)] (17

T
Eqgs. (15)—{17) lead to the invariant dispersion relation

Pap? {1 = 72) = £m [(1 +r}{wp' /(L = rhop)] 72, (18)
where the sipn + corresponds to positive frequency states whereas the sipn — correspeonds to
negative ones. It is worth mentioning that the mass shell equation (7) can be obtained from
{18}). In order to find the planewave solutions in a ganeral form, i. &, at arbitrary momentum
p* we, for a start, confine cursdves to the rest frame and try the following ansatz :

1) = Vami=r)  § )t ) = i) () et

where +/2m{l—7) is a normalizing multiplier and @, y are arbitrary 3-spinors normalized
hy means of gafgc:' =1, ¥ty = 1. It is easy to verify that the corresponding positive and
negative frequency bispinor density amplitudes satisfy Eqs. (15)-(17). Note once more that
these solutions are found in the rest frame, in which p* = {m,rme}, wheress kinematic
4-momentum &* = {m({l —r),0} and, respectively, v = k/k” = . Taking into account
the transformational properties (§)—{12) we find planewave solutions of Eq.(13) in the final

form:
- VAR [VRTVETE
 m{l—r)
VE=vVE—k (na)p

g

I

10y E—'i o



VB ko— vk —k* (no)x

w{z) = - —+

m{l—r
t=n i+ /- x

where the unit vector n indicates the direction of &, io which case &° and p® are related by
{6). The bispinor density fields 1), are normalized with the help of the invariant conditions :
[( vﬂ'llai’}‘“'t,bi fﬁiwi}z] —Arfah b, =+ 2m{1—r)} . As for the dispersion relation {18), in terms of
k4 it takes the form /kk% = +m(l — r) [(v,£)2/ 5.:_?-51:-'?':|"'f % . One of its sclutions corresponds
to massive frmions and, according to (5), admits the parametric representation by means of
J-velocities ¥ . Another solution corresponds to massless fermions and has the form &% oc »®.
Note at last that, in the limit » = 1, Eq. (13) takes the form 2y°81—muy, v = ) and,
after the local gange transformation 1@ — ezp(—fmuaz®) 1) , reduces to the massless Dirac
squation.

Ei' Ty o :

5 Conclusion

Surmming up the results of the present work, we would like to emphasize that the spontaneous
brealang of Lorenmtz symmetry does not necessarily signify the breslking of relativistic
symmetry and may turn out to be a secondary dffect induced by the spontaneous brealdng
of paupe symmetry. Here, the 10-parameter Poincaré group of an initial massless gauge-
invariant theory is reduced to the #-parameter inhomogenecus group of the peneralized
Lorentz trapsformations, which assumes in this case the role of the rdativistic symmetry
group of the corresponding vacuum sclution of the theory. And vacuum itself, if it is
regarded as space-time filled with a formiop-antifermion condensate, assumes anisotropic
Fipslerian pecometry instead of Minkowsld gecmetry. Within the framework of this picture
the rearrangement of initial vacuum and the appearance of masses in the initial massless
fields are not due to the standard Hipggs mechsnism but result from collective quantum
effects peculiar to nonlinesr dynamic systems.

Reverting to the translationally invariant generalized Dirac equation {13), which was
cbtained from the reguirement of the generalized Lorentz symmetry, we see that it is
essentially nonolinear. However this nonlinesrity disappesars in two cases: fArstly, if the
anisotropy fisld, constant over the whole space { and more exactly, its magnitude r ) tends to
zero {in this case (13) changes to the standard massive Dirac egquation ), and secondly, if r
tends to its maximally attainahble value equal to unity. In the latter case the anisotropy fisld
turns cut to be purely gauge while the massive famion-antifermicn field proves itself as the
corresponding massless one. This means that the equation (13) describes the dynamics of the
massive fermion-antifirmion field in an anisotropic medium (in a relativistically invariant
anisotropic condensate), in which case the effective inertial mass of the fermion-antifermion
field has the dynamic origin and depends on the degree of order of the condensate, which
should be a function of temperature.

Concluding the discussion of the nonlinear generalization of the Dirac equation, we note
in addition that so far we have succeeded in constructing only simple, namely, planewave
solutions of this equation. However, effident algebraic-theoretical methods of constructing
exact solutions for a wide class of nonlinear spinor equations have already besn developed
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[15]. Using these methods, one can in principle obtain, also, other and, which is especially
important, “nongenerable” families of exact solutions of the equation {13). As for the peneral
conceptual problems relating to nonlinear generalizations of the Dirac equation [16], we hope
to pive more attention to them in our subsequent publications.
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